Performance Characterization of Multi-threaded Graph Processing
Applications on Many-Integrated-Core Architecture

Lei Jiang Langshi Chen Judy Qiu
School of Informatics, Computing, and Engineering, Indidsniversity Bloomington
{jilang60, Ic37, xqiu}@indiana.edu

Abstract—In the age of Big Data, parallel graph processing has vertex or edge [12], [26], [27]. In a large-scale clustezgient
been a critical technique to analyze and understand connected communications are translated to a huge volume of messages
data. Meanwhile, Moore’s Law continues by integrating more across multiple nodes [22], [23], [32], seriously limititige

cores into a single chip in deep-nano regime. Many-Integrated- f f h ; E inale Mac-Mini
Core (MIC) processors emerge as a promising solution to process periormance of graph processing. tven a singie Mac-Mini

large graphs. In this paper, we empirically evaluate various SSD-based laptop potentially can outperform a mediumescal
computing platforms _including an Intel Xeon E5 CPU, an cluster for graph processing [17]. On a shared memory multi-
Nvidia Tesla P40 GPU and a Xeon Phi 7210 MIC processor core CPU node, communications are interpreted to loads and
codenamed Knights Landing (KNL) in the domain of parallel stores in memory hierarchy [26], [27]. The core efficiency of

graph processing. We show that the KNL gains encouraging . .
performance and power efficiency when processing graphs, so shared memory node is averagely OBigher than that

that it can become an auspicious alternative to traditional in @ cluster [30]. However, compared to GPUs, the graph
CPUs and GPUs. We further characterize the impact of KNL computing throughput on CPUs is still constrained by the
architectural enhancements on the performance of a state-g¢he- |imited number of cores.

art graph framework. We have four key observations:O Different GPU frameworks capture graph processing parallelism by

graph applications require distinctive numbers of threads to . d i " d th ds of
reach the peak performance. For the same application, various mapping and computing Vverlices or edges on thousands o

datasets need even different numbers of threads to achieve thetiny GPU cores [5], [35]. Although graph applications exhib
best performance.d Not all graph applications actually benefit irregular memory access patterns, frequent thread synchro

from high bandwidth MCDRAMSs, while some of them favor njzations and data dependent control flows [28], GPUs still

low latency DDR4 DRAMSs. [0 Vector processing units executing ; ;
AVX512 SIMD instructions on KNLs are underutilized when substantially boost the performance of graph processirg ov

running the state-of-the-art graph framework. 0 The sub-NUMA CPUS'. Howeygr, the performancg of graph applicgtions on
cache clustering mode offering the lowest local memory accessGPUS is sensitive to graph topologies. When traversing graph
latency hurts the performance of graph benchmarks that are lagk ~ with large diameter and small degree, GPUs exhibit poor

of NUMA awareness. At last, we suggest future works including performance due to the lack of traversal parallelism [35].
system auto-tuning tools and graph framework optimizations 10 - \joregver, in some commercial applications, simple opera-
fully exploit the potential of KNL for parallel graph processing. . . - ;
tions, such as adding or deleting an edge in a graph, may

cost a significant portion of application execution time][26
but it is difficult for GPUs to support such basic operations.

Big Data explodes exponentially in the form of large-scale Recently, Intel releases Xeon Phi MIC processors as an
graphs. Graph processing has been an important techniqualternative to traditional CPUs and GPUs for the high per-
compute, analyze and visualize connected data. Real-woiddmance computing market. A MIC processor delivers GPU-
large-scale graphs [26], [35] include social networksndra comparable computing throughput and CPU-like sequential
portation networks, citation graphs and cognitive netwprkexecution power. Compared to GPUs, a MIC processor can
which typically have millions of vertices and millions toeasily support basic graph operations, e.g., insertitefidg a
billions of edges. Because of the huge graph size, it m®de/edge, since it is fully compatible with the X86 instioi
natural for both industry and academia to develop parallebt. In this paper, we focus on the performance charactieriza
graph frameworks to accelerate graph processing on vari@ismulti-threaded graph applications on an Intel Xeon Phi
hardware platforms. A large number of CPU frameworks, e.q2nd generation) processor - KNL [29]. Our contributions ar
Giraph [32], Pregel [23], Galois [27], PowerGraph [12] andummarized as follows:
GraphLab [22], have emerged for scalable in-memory graphe We empirically evaluate a state-of-the-art graph frame-
processing. Recent works propose GPU frameworks such as work on three hardware platforms: an Intel Xeon E5 CPU,
CuSha [15], Medusa [37], LonestarGPU [5] and Gunrock [35] an Nvidia Tesla P40 GPU and a KNL MIC processor.
to perform high throughput graph processing on GPUs. We show that the KNL demonstrates encouraging perfor-

In CPU frameworks, graphs are partitioned, distributed and mance and power efficiency when running multi-threaded
processed among multiple nodes [12], [22], [23], [32] by mes graph applications.
sage passing schemes or computed locally on a shared memory We further characterize performance details of multi-
node [26], [27]. Distributed graph processing is notorious threaded graph benchmarks on KNL. We measure and an-
for frequent communications between computations on each alyze the impact of KNL architectural enhancements such

I. INTRODUCTION

as many out-of-order cores, simultaneous multithreadingsing a general framework or by using different frameworks

cache clustering modes, vectorization processing undgs CPUs and GPUs respectively. Particularly, as one of the

and 3D stacked MCDRAM on parallel graph processindpest-known graph benchmark suites, Graph500 [25] provides

We have four key observationgt Different graph appli- only limited number of CPU workloads, since it is designed

cations require distinctive numbers of threads to achiefer only CPU-based system performance ranking.

their best performance. For the same benchmark, various

datasets ask for different numbers of threads to attdh 1arget Graph Benchmarks

the shortest execution timél Not all graph applications Graph applications exhibit diversified program behaviors.

actually benefit from high bandwidth MCDRAMs, while Some workloads, e.g., breadth first search, are traveasaeb

some of them favor low latency DDR4 DRAM<S] Only a subset of vertices is typically active at a given point

VPUs executing AVX512 SIMD instructions on KNLsduring the execution of this type of applications. They wofte

are underutilized when processing graphs.The sub- introduce many memory accesses but limited arithmetic-oper

NUMA cache clustering mode offering the lowest locahtions. Their irregular memory behavior results in extrigme

memory access latency hurts the performance of grapbor locality in memory hierarchy. Some graph benchmarks

benchmarks that are lack of NUMA awareness. operating on rich vertex properties, e.g., page rank aaddte
« For future work, we suggest possible system auto-tunimgunt. They incorporate heavy arithmetic computations on

tools and framework optimizations to fully exploit thevertex properties and intensive memory accesses leading to

potential of KNL for multi-threaded graph processing. hybrid workload behaviors. Most vertices are active in all
stages of their executions. We selected, compared andcedtudi
Il. BACKGROUND . .) :

six common graph benchmarks in this paper. We introduce

A. Graph Processing Frameworks and Benchmark Suite their details as follows:

The rapid and wide deployment of graph analytics in real- « Breadth First Search traverses a graph by starting from
world diversifies graph applications. A lot of applicatiosiech a root vertex and exploring neighboring nodes first. The
as breadth first search incorporate graph traversals, otk traversal parallelism is exploited by vertex capture where
benchmarks such as page rank involve intensive compusgation each thread picks a vertex and searches its neighbors.
on vertex properties. Though low-level hardwired impletaen « K-Core finds a maximal connected sub-graph where all
tions [1], [4], [8], [10], [13] have demonstrated high contipg vertices have> K degree. It follows Matula & Beck’s
efficiency on both CPUs and GPUs, programmers need high- algorithm [26].
level programmable frameworks to implement a wide vari- « Single Source Shortest Pathcalculates the minimum
ety of complex graph applications to solve real-world prob- cost paths from a root vertex to each vertex in a given
lems. Therefore, graph processing heavily depends onfepeci graph by Dijkstra’s algorithm [26].
frameworks composed of data structures, programming rmodel « Graph Coloring partitions a graph into independent sets.
and basic graph primitives to fulfill various functionadii. One set contains vertices sharing the same color. It adopts
Previous research efforts propose many graph frameworks on Luby-Jones’ algorithm [26].
both CPUs [12], [22], [26], [27] and GPUs [5], [15], [26], [B7 « Page Rankuses the probability distribution to compute
to hide complicated details of operating on graphs and geovi page rankings. The rank of each vertex is computed by

basic graph primitives. Most workloads spe5tfs ~ 76% of PR(u) = Y. PE’?(U“), where thePR of a vertex) is
execution time within graph frameworks [26]. decided by thePR of each vertex«) in its neighbor set

The graph applications we studied in this paper are from a (2V,) divided by its outgoing edge numbé&i(v).
state-of-the-art graph benchmark suitggaphBIG [26]. The « Triangle Count measures the number of triangles that are
suite is implemented with IBMSystem-Gframework that formed in a graph when three vertices are connected to
is a comprehensive graph library used by many industrial each other. It is implemented by Schank’s algorithm [26].
solutions [31]. The framework adopts the vertex centric-pro
gramming model, where a vertex is a basic element of a grafsh. Graph Topology
Properties and outgoing edges of a vertex are attached to th&he performance of graph applications is heavily influenced
same vertex data structure. The data structure of all esric by the topology of graph datasets. We studied how topologies
stored in an adjacency list, and outgoing edges inside awerimpact the benchmark performance via following metrics.
data structure also form an adjacency list of edges.mb@r The eccentricity e(v) of a vertexwv in a given connected
reason to choose graphBIG is that benchmarks in this suip@ph G is the maximum graph distance betweenand
have a CPU OpenMP version and a GPU CUDA version shamy other vertexu of G. The diameterd of a graph is
ing the same data structure and vertex centric programmitigg maximum eccentricity of any vertex in the graph=£
model provided by System-G. In this way, we can minimizenax,cy €(v)). The Fiedler eigenvaluef the graph [(G)) is
the impact of differences between CPU and GPU graphe second smallest eigenvalue of the Laplacian matri& .of
processing frameworks, and focus on only differences batweThe magnitude ofF'(G) exhibits how well G is connected.
various hardware computing platforms. On the contraryeiothFor traversal-based applications such as breadth firstisear
graph suites [1], [4], [5] implement graph applicationsheitit traversal iteration number is proportional to the ecceityri

and Fiedler eigenvalue. Tivertex degreéndicates the number to DDR4 DRAM in main memory flat mode), a hardware-
of edges connected to a vertex. The average vertex degree laaghaged L3 cachecéche mode) or both Ifybrid mode).
the vertex degree distribution of a graph reflect the amotint Bhe flat mode offers high bandwidth by MCDRAM and low
parallelism. Large vertex degree variations introducestrd latency by DDR4 DRAM. However, programmers have to
tial load imbalance during graph traversals. Real-workpgs track the location of each data element and manage software
can be categorized into two types: the first has large diametemplexity. On the contrary, theachemode manages MC-
with evenly distributed degree, e.g., road networks; arel tbRAM as a software-transparent direct-mapped cache. The
second includes small eccentricity graphs with a subset lofbrid mode combines the other two modes.
few extremely high-degree vertices, e.g., social netwofs
chose different datasets from both categories, and geterat—! I] [gﬁ
several synthesized graphs with diameters varying fromlsmg a: i:b %
to huge in Section IV. é_ N5 g i q
S ar3) :
D. Intel Xeon Phi Architecture All-to-All Quadrant(Hemisphere) SNC-4(2)

1) Overall Architecture:Xeon Phi MIC processors are fully Fig. 3. Configurations on Cache Clustring.
compatible with the x86 instruction set and hence support
standard parallel shared memory programming tools, models3) Cache Clustering ModeSince all KNL tiles are con-
and libraries such as OpenMP. The KNL [29] is the 2nfBiected by a Mesh NoC where each vertical/horizontal link is
generation architecture fabricated by the 14nm technodogly @ bidirectional ring, all L2 caches are maintained cohebgnt
has been adopted by several data centers such as the nati@aMESIF protocol. To enforce cache coherency, KNL has a

energy research scientific computing center [3]. distributed cache tag directory organized as a set of (eetaty
directories (shown as CHA in Figure 1) that record the state
| | and location of all memory lines. For any memory address, by
F m ’1 CHA a hash function, KNL identifies which tag directory recoglin
mcdram | (11 | w’zwu 2veU it. As Figure 3 shows, the KNL cache can be operated in
I o | =t raam o o five modes includingAll-to-All, HemisphereQuadrant SNC-

mc —_— \J 2 andSNC-4 When[J a core confronts a L2 mis§] it sends
[| Tile structure a request to look up a tag directofy. The directory finds a
Fig. 1. Xeon Phi KNL (MC: DDR4 controller; EDC: MCDRAM contier), MiSS and transfers this request to a memory contrdlleAt
last, the memory controller fetches data from main memory
The KNL detailed architecture is shown in Figure 1. It i&ind returns it to the core enduring the L2 miss. In #ie
built by up to 72 Atom (Silvermont) cores, each of which i3o-All mode, memory addresses are uniformly hashed across
based on a low operating frequency 2-wide issued out-aéfordill tag directories. During a L2 miss, the core may send a
(O00) micro-architecture supporting four concurrent dui® request to a tag directory physically located in the fatthes
a.k.a, simultaneous multithreading (SMT). Additionallyery quadrant from the core. After the directory finds a miss, it
core has two vector processing units (VPUs) that suppenay also send this request to a memory controller located in
SIMD instructions such agVX2and AvX512that is a new a third quadrant. Therefore, a L2 miss may have to traverse
512-bit advanced vector extension of SIMD instructions fane entire Mesh to read one line from main memory. The
the x86 instruction set. A VPU can execute up to 16 sing®uadrant(Hemisphere) mode divides a KNL chip into four
precision operations or 8 double precision floating point ogtwo) parts. During a L2 miss, the core still needs to send a
erations in each cycle. Two cores form a tile sharing a 1IMRquest to every on-chip tag directory, but the data asttia
16-way L2 cache and a caching home agent (CHA), whichts the target tag directory must be in the same part that the
a distributed tag directory for cache coherence. All tiles atag directory is located. Memory accesses from a tag dirgcto
connected by a 2D Mesh network-on-chip (NoC). are managed by its local memory or cache controller. The
Hemisphereand Quadrantmodes are managed by hardware
] | e [mediany T and transparent to Operating System (OS). In conFra_stulb}e s
ddr4 NUMA-clustering SNC-2/4 also separates the chip into two
cache flat hybrid
Fig. 2. Configurations on MCDRAM.

mcdram

|mcdram| ddr4

saJppe
|eairsAyd

ssaippe >
|eaisAyd

S!

or four parts and exposes each as a separate NUMA domain
to OS. During a L2 miss, the core only needs to send a request
to its local tag directory that also transfers this requeghe

2) MCDRAM: The KNL main memory system supportdocal memory controller if there is a directory miss. Theref
up to 384GB of DDR4 DRAM and 816GB of 3D stacked the SNC-4mode has the lowest local memory access latency,
MCDRAM. The MCDRAM significantly boosts the memorybut longer memory latency than that of tiguadrantmode
bandwidth, but the access latency of MCDRAM is actuallwhen a request crosses NUMA boundaries. This is because
longer than that of DDR4 DRAM [24]. As Figure 2 showsthe requests traveling to another NUMA region have to be
MCDRAM can be configured as a parallel memory componentanaged by OS or applications themselves.

I1l. RELATED WORK Graph datasets The graph inputs for our simulated bench-

A recent graph characterization work on CPUs [4] identifigg@rks are summarized in Table |, whelgree denotes the
that eight fat OoO Ivy Bridge cores fail to fully utilize off- 2verage vertex degree of the graph dndr - describes the
chip memory bandwidth when processing graphs, since tR¢éerage BF |terat_|on number computed by searching from 10K
small instruction window cannot produce enough outstapdifi2ndom root verticesoadNet_XX(road) are real-world road
memory requests. In contrast, the KNL MIC processor can shetworks where most vertices have an _outgomg degree.below
urate main memory bandwidth by 64 small 000 cores, each4- S0c-Slashdot081=nd ego-Gplus(social) are two social
of which supports SMT and has two VPUs. More researdpptworks typ_wally having scale-free vertex degree digtion
efforts [2], [5], [28], [36] analyze GPU micro-architectirde- and small d|amete|delaunay(delagnay) datasets are Delau-
tails to identify bottlenecks of graph benchmarks. In thipgr, Nay triangulations of random points in the plane that also
we analyze and pinpoint inefficiencies on micro-architezsu have extremely small outgoing degrees. Like social networ_k
of KNL when running multi-threaded graph applications.-Pré&onecker(kron) datasets have large average vertex outgoing
vious physical-machine-based works [7], [13] find that thet fi degre_e and can be traversed by only several BF_ iterations. We
generation Xeon Phi, Knight Corner, has poor performan@s0 included two large graph datasets (largejiter7 and
for graph applications due to its feeble cores. Although tif@m-friendster each of which contains millions of vertices
latest simulator-based work [1] characterizes the perémee and. billions of edges. The size of graph datasets is mainly
of multi-threaded graph applications on a MIC process&ec'ded by the numb_er of edges, because the average degree
composed of 256 single-issue in-order cores, it fails tesimer Of graphs we chose ig 2. We selected graph datasets from
the architectural enhancements offered by KNLs, e.g., Odlf Stanford SNAP [19]. We also used the synthetic graph
cores, SMT, cache clustering modes, VPUs and MCDRANE€nNerator, PARMAT [14], in dataset sensitivity studies.

To our best knowledge, this work is the first to characterimt a TABLE Il
analyze the performance of multi-threaded graph apptinati MACHINE CONFIGURATIONS,
on the KNL MIC architecture. [Hardware || Description |
Intel Xeon launched in Q2'16, 8-core@2.5GHz, 2T/core,
IV. EXPERIMENTAL METHODOLOGY E5-4655v4 || 3.75MB L3/core, 512GB 68GB/s DDR4 DRAW
Graph benchmarks. In this paper, we adopted and studied — Ithermﬁ' :?S'%Z,E%W%%DP)dlfW@l —
. vidia auncned In , -cuaacCore . Z,|
six benchmarks including breadth first search (BF), single | 51y;079 peak SP perf: 5783 GFLOPS, 8GB 256GB/s
source shortest path (SS), graph coloring (GC), k-core (KC) GDDRS5, PCle 3.0x16 to CPU, TDP 150W

triangle count (TC) and page rank (PR) from graphBIG [26]. |Nvidia Tesla || launched in Q3'16, 3840-cudaCore@1.3GHz,
Each benchmark contains a CPU OpenMP version and a GPU Pao g%‘gs; gf:rlfé %(_)8316?5"COPP3'T23S82530A{ZGB
CUDA version. Due to the absence of PR GPU code in graph- Taunched in Q2'16, 64-core@1.3GHz, 4T/core,
BIG, we created a vertex-centric GPU PR implementation | Intel Xeon Phi/| 0.5MB L2/core, peak SP perf: 5324 GFLOPS,
based on a previous GPU PR benchmark [5] and the System; 7210 (KNL) gl‘;hgg”fészé%?sBD‘lgngDlgia’ﬁcDngé'\é'w
G framework. We compiled codes on CPU by icc (17.0.0) [pisk ZTB SSD NAND-Flash

with -03, -MIC-AVX-512 and Intel OpenMP library. Through
the commanchumact] we chose to run CPU benchmarks in Hardware platforms. We chose and compared three server-

DDR4 DRAM under the flat mode. On GPU, we compiledevel hardware platforms including a Xeon E5 CPU, a Tesla
programs by nvcc (V8.0.61) with CUDA-8.0. Since the sizB40 GPU and a Xeon Phi 7210 (KNL) MIC processor. Since,
of large graph datasets exceeds the maximum physical GPempared to KNL, Tesla P40 achieves almost double peak
memory capacity, we usedudaMallocManagedunction to single point float (SPF) throughput, we also included an

allocate data structures into a CUDA-managed memory spdd¢@dia GTX1070 GPU having similar peak SPF throughput

where both CPUs and GPUs share a single coherent addigsgur experiments. The machine configurations are shown in
space. In this way, CUDA libraries transparently manage GPIable Il. Both Xeon E5 and KNL have a 512GB DDR4 main

memory access, data locality and data migrations betwe@gmory system, while P40 and GTX1070 are also hosted in

(7))

CPU and GPU. The OS we used is Ubuntu-16.04. the Xeon E5 machine with 512GB DDR4 DRAM. The thermal
TABLE | design power (TDP) values of Xeon E5, GFX1040, P40 and
BENCHMARK DATASETS. KNL are 135W, 150W, 250W and 230W. TDP represents the

maximum amount of heat generated by a hardware component

Dataset Abbr. | Vertices| Ed D Tt . S

[Datase [[Abbr._|vertces| Edges | Degree | Trer i that the cooling system can dissipate under any workload.
roadNet_CA road 1.97M [5.53M |2.81 665 -

roadNet TX 138M 13.82M 1227 1739 Prpﬁlmg tools. Wg adopteq InFeI VTune Analyzer to cqllect
soc-Slashdot0811[_ ..~ [0.08M [0.9M [117 18 architectural statistics and likwid-powermeter [34] toofile
gglo'Gp'“S - g-gm 135-% é207-1 223 power consumption on CPU and KNL. The likwid-powermeter
elaunay_n Jo.

delaunay n19 || 481U G 5N 3 T5M 6.0 596 Is a tool for accessing RAPL registers on InFeI processars, s
kron_g500-logn1[0.1IM |10.23M]|78.0 3 it is able to measure the power consumption of both CPU
k”?”_%500"°9”15 2-72“%’\/' (2)14;;'\/' ?1067 23 package and DRAM memories. The register reading interval
twitter
comFriendster—11 129 e5eM T18IE (276 = we set in all experiments isms. For GPUs, we used Nvidia

I Grx1070[] P40 I KNL
10

=
o
[y

10 10° 10*

0
» BF SS KC GC TC o m PR
a 3 - 8
= 10° 10 10" 7
8 1 2 1 6
£10 10 10 2
S 10 10° 4
£ 10' 3
S .0 J " 0 0 0 -1 2
v 200 6@\5‘0‘\ (e?® w0 c;’bé LR (oegea® 1 T TR 1 2Bl oo™ w0 A BENCIL R 1036 LR oegea®
é&a\& 0 i\ %«\ g e\?’\) OV O\ %«\ g e\?’\) 0% NS\ Q}Q 33?»" OV T\ %«\e é e\,a\x OV T\ %«\ é e\"’\) OV O\ %«\

Fig. 4. Performance comparison between Xeon E5-4655v4, @eRaT X1070, Tesla P40 and KNL (normalized to Xeon E5-4655v4).

visual profiler qivprof to collect both performance and powessearch on all possible configurations on CPU and GPU to
characterization results. The performance results wertego attain and report the best performance.
in Section V do not include the overhead of profiling tools on The primary weakness of GPU is the load imbalance
CPU, GPU and KNL. problem introduced by its sensitivity to graph topologies i
Metrics. We measured the performance of graph applic&raversal-based graph applications. For BF, GPUs achietre b
tions asTraversed Edges Per Seco(iEPS) [25]. The TEPS ter performance than KNL on graphs with small diameter and
for non-traversing-based benchmarks, e.g., PR, is computarge average vertex degree, e.g., social and kron. Hugerira
by dividing the number of processed edges by the meaal parallelism exists in these graphs, and hence, the more
time per iteration, since each vertex processes all its dg®res one platform has, the better performance it can azhiev
in one iteration [25]. We aim to understand the performande this case, KNL is slower than GTX1070, although they
and power consumption of multi-threaded graph applicatidrave similar peak SFP computing throughput. This is because
kernels, and thus all results ignore disk-to-memory and-hograph traversal operations can barely take advantage osVPU
to-device data transfer time during application initiatibns. on KNL. However, compared to KNL, GPUs processes less
But we measured page faults on CPU and data transfedges when traversing graphs with large diameter and small

between CPU and GPU inside application kernels. average vertex degree, e.g., road and delaunay. Therdas lit
traversal parallelism in these graphs, so the OoO cores &f KN
V. EVALUATION prevail due to their powerful sequential execution cajigbil

When processing large graphs, GPUs suffer from frequent data
hared llel h) . th R{igrations between CPU and GPU memories, due to their
shared memory parallel graph processing, since the Fﬂmforlimited GDDR5 memory capacity. Therefore, KNL shines on

we selecte_d hav_e completely d'ﬁeref.“ power budgets ardk ha1rhese large graph datasets. P40 outperforms GTX1070 on all
ware configurations such as operating frequencies, core n ph inputs, because it has more CUDA cores and a larger

bers, cache sizes and micro-architecture details. By atilog capacity GDDR5 memory system. As another traversal-based

more power budgets and hardware resources, theoretic ¥\ph benchmark, SS shares the same performance trend as
speaking, any type of platform can possibly outperform t at of BF '

others. Our purpose of the comparison between KNL and otherKC and GC are two applications operating on graph struc-

types of hardware is to demonstrate the KNL MIC ProCesSPlies. Their computations involve a huge volume of basic

achieves encouraging performance and power efficiency, ilhmetic operations, e.g., integer incrementing (deere-

thus it can become one of the most promising alternatives.to :
traditional CPUs and GPUs when processing graphs. |Fig), on vertices or edges. A large number of CUDA cores

on GPUs support these massive arithmetic operations better

To investigate the KNL performance of parallel graph P'%han a small number of KNL cores. GPUs can perform fine-
cessing, we empirically analyze the performance comp’cnrisgﬁ1

We cannot answer which type of hardware is the best f

b ¢ hard laf And th h grained scheduling on warps to fully utilize CUDA cores,
etween four hardware platiorms. And then, we characteriggs oach KNL core can switch between only four threads,

performance. A graph. benchmgrks on KNL. W(_?ach of which cannot be fully vectorized. Therefore, the GPU
explain the impact of KNL architectural innovations Su%erformance is generally 10better than that of KNL. For
as many 000 cores, S.MT’ VPU and MCDRAM on mUIt"GC,theimprovement brought by thousands of CUDA cores on
threaded graph applications. P40 even mitigates the data transfer penalty due to itsdinit
GDDR5 memory capacity, i.e., P40 improves the processing
performance over KNL by 16.7% on large graph datasets.
The performance comparison between four hardware plat-As graph benchmarks computing on vertex properties,
forms is shown in Figure 4, where all results are normalizellC and PR exhibit hybrid workload behaviors, since they
to the performance (TEPS) of Xeon E5 CPU. We configuredquire not only graph traversals but also relatively heavy
KNL cache clustering in the Quadrant mode and MCDRAM iarithmetic operations on vertex properties, e.g., mukipl
the cache mode. The KNL performance reported in this sectiaocumulate operations. In TC, arithmetic operations datein
is achieved by its optimal thread configuration includinggtid the performance of graph processing, so compared to KNL,
number and thread affinity. We also performed an exhausti@&Us boost the application performance by 112P45%

A. Performance Comparison

250 250 250 250
BF_social 1BF_road BF_large GC_large

£ 200 200 200 200
(T i 4

= 150 150 150 150
9] 11 1 I I

£ 100 100 100+ 1 100

o | | =

0 = R e =l e s =

O O 0 T T T T T T T T 0 \l) w‘ T w‘ T \lh T NI\
Vo (10 il 080l g g Q 1) O\

STt YRR GRS Tt e

T T T T T T T T T T T T T T T T
D (10l 580l (M QO ot (10wl 080 o

RIS P Qo » RPN P @O0 pT (o
ST e Sae™ N W

Fig. 5. Power comparison between Xeon E5-4655v4, GeForcelBTX Tesla P40 and KNL.
s . I GFx1070 [P40 I KNL

10 10 10 10° 10°
BF SS , KC GC TC PR
10 n
10°
10°] 10' 10" 10}
luldlL.] ﬁ ° mﬁ . Hﬂ
10° H 10° ° 10° 10° 10°

10
O ¥ A 08 6@ ot O 2l @ of (6@ o™ O N 42 o8 (6€ o™ O N 4@ o8 (6@ o0 O 24 @ of (98 o0 O ¥ @ (o (98 o0
P08 LR O Be? PACTLAR (O 8% o AL (O (B2 RO QLR OV 8% 2 R ATLAR (O B RO QLR (O S5 e
QAN o o) @ o @ Qoo ASVAS RS QN0 & e Qo O\ 20e
NS A ée\a\‘% ek ée\7’° R (\‘e\z\) B Se"”\)" e e‘,e\%“ LR

~

=
o

N

normalized TEPS per watt
=
o

Fig. 6. Performance per watt comparison between Xeon E5-4655eForce GTX1070, Tesla P40 and KNL (normalized to Xeon &5544).

averagely. In PR, graph traversals dominate on graphs wéhd the power consumption of CPU DRAM decreases by
large diameter and small average vertex degree, e.g., rahd 40% averagely when processing road graphs. Compared to
delaunay, so KNL obtains better edge processing speed ®RUs, CPU and KNL are insensitive to topologies of graph
these graphs. For almost all combinations of graph bendtsmadatasets due to their limited number of cores. Therefory th
and datesets, Xeon E5 achieves the worst performance, i@ve more consistent power results throughout varioushgrap
only 1%-~33.9% of CPU performance or 8960% of KNL inputs. For large graph datasets, GPUs barely approach thei
performance. Only for TC, GPUs are slightly slower thamDPs due to frequent data transfers through PCle links. CPU
Xeon E5 on large graph datasets, due to large penalties@f datd KNL also suffers from frequent page faults, and thus
transfers on PCle links between CPU and GPU memories.their largest power values are only around 7080% of their

TDPs. However, compared to other datasets, DRAMs in all
B. Power and Performance Per Watt Comparison hardware platforms significantly boost the power consuompti

The details of power characterization is shown in Figure By 39%~62% when dealing with large graph inputs. SS
where we list power consumptions of four types of hardwafares a similar power consumption trend with BF. The power
and their 512GB DRAM main memories representedXy Cconsumption of TC, KC, GC and PR with small datasets is
DRAM (X can be Xeon E5 {C}PU, {G}FX1070, {P}40 and similar to I_3F with social datasets, since all hard_/vare platis
{KINL.). The KNL power includes the power of MCDRAM, €njoy similarly large graph processing parallehsm and Isma
while the GPU power contains the power of its GDDR#atasets do not need to frequently visit DRAMs. But when
memory. For GPUs, we used nvprof to profile the GPU pow&nning TC, KC, GC and PR with large datasets, DRAMs
and likwid-powermeter to measure the DRAM power in it§Pend 4%-11% more power than that when processing large
host machine. datasets in BF. This is because graph applications opgratin

For social graph datasets, all platforms are able to fulf] both structures of large graphs and a huge volume of vertex

occupy almost 100% hardware resources and approach tipgqpperties send more intensive memory accesses to DRAMs
TDP in a short time, because large traverse parallelisntsaxis than traversal-based benchmarks.

these datasets. Only CPU DRAM is heavily accessed duringThe performance per watt comparison among all hardware
BFs, while other platforms barely access their 512GB mapiatforms is exhibited in Figure 6, where all results are
memories. This is because both GPUs has their own GRPOrmalized to the performance per watt result of Xeon E5
memories and KNL has a 16GB MCDRAM-based cach€PU. Compared to CPU, P40 (GFX1070) achieves-B%x

As a result, only CPU DRAM achieves- 601/ average (3~37x) better performance per watt averagely. On average,
power consumption. For road graph datasets, the largestrpoWNL obtains only 60%-285% better performance per watt
spent by P40 (GFX1070) during searches is only around 48%er CPU. But for large graph datasets, compared to GPUs,
(46%) of its TDP, due to the lack of traverse parallelistKNL improves the performance per watt by 74%86% when

in these datasets. The average power consumption of twmning BF and PR, and has similar results on performance per
GPUs when processing road datasets decreases by24% watt when running other benchmarks. Frequent data transfer
over that dissipated during traversing on social datadats.between GPU and CPU memories caused by the limited
contrast, compared to social graphs, CPU and KNL slightbapacity of GDDR5 memory waste a large amount of power
decrease their average power consumption by only-8%, and slow down applications on GPUs when processing large

graphs. When running GC, TC and PR, although P40 is fastéere, X indicates thread placement and has two options:
than GFX1070, the power consumption of P40 is also largassigning thread+1 to an available thread context as close as
Therefore, the performance per watt of P40 is not signiflgantpossible to that of thread (Compact) or distributing threads

better than that of GFX1070 for these benchmarks. as evenly as possible across the entire system (Scatted). An
C. Threadin Y denotes granularity and includes two choices: allowing all

. gJ . L . .

1) Thread” Scaling:We show the graph application perthreads bound to a physical core to float between different
formance with varying OpenMP thread numbers on KNL ithread contexts (Core) or causing each thread to be bound to a
Figure 7, where all performance results are normalized ¢o thingle thread context (Thread). The performance compariso
performance achieved by 256 threads. 256 (4 threads4 between all configurations of thread placement and affinity
cores) is the KNL logic core number. Due to the limiteds shown in Figure 9, where each bar represents Xré
figure space, we selected only the larger dataset in each graggmbination and all bars are normalized to Compact-Core. We
input category. With a small number of threads 2), there see that Compact configurations with Core and Thread have
are not enough working threads to do the task, and thus werse performance, since Scatter configurations bettbzeuti
benchmark obtains its best performance. When having m@# physical cores and distribute memory requests evenly
threads, the performance of almost all benchmarks improv@®ong all memory controllers. In two Scatter configuratjons
more or less. However, when the thread number goes bey@idnularity Thread wins slightly better performance, lsea
256, the execution time significantly rises, since the thredtiscatters consecutive threads sharing similar apptioatie-
synchronization overhead dominates and degrades therperf@viors to different physical cores. SMT works better when
mance of most benchmarks. The best performance of edbfeads with different program behaviors run on the same
benchmark is typically achieved B2 ~ 512 threads. physical core. When one thread is stalled by memory accesses,

SMT and oversubscription allow multiple independerihe core is switched to other threads that unlikely confront
threads of execution on a core to better utilize hardwareemory stalls in near future due to their distinctive bebesi
resources on that core. To implement SMT, some hardware
sections of the core (but not the main execution pipeline) ap- MCDRAM
duplicated to store architectural states. When one thread isVe configured MCDRAMs as a hardware-managed L3
stalled by long latency memory accesses, SMT stores its stadche for KNL as default. However, we can also disable
to backup hardware sections and switches the core to exedd@DRAMs to use only DDR4 DRAM as main memory.
another thread. SMT transforms one physical KNL core fbhe performance improvement of MCDRAM is exhibited
four logic cores, each of which supports one thread. Sorite Figure 10, where all results are normalized to the per-
applications with certain datasets, e.g., TC with ego-6plfiormance of KNL with only DDR4 DRAM main mem-
and SS with kron_g500-logn18, fulfill their best performancory. Compared to DDR4, MCDRAM can supplx band-
by SMT (256 threads). In contrast, oversubscription regguirwidth. The MCDRAM-based cache boosts the performance
the assistance from software such as OS or OpenMP librafymost benchmarks by its 16GB capacity and larger band-
to switch threads, when the running thread is stalled. Fetidth. Particularly, large graph datasets benefit more ftioen
applications suffering from massive concurrent cache esissMCDRAM-based cache, since they enlarge the working set
like SS with roadNet_TX and delaunay_n19, oversubscriptisize for most applications. On the contrary, the accesadste
supports more simultaneous threads and outruns SMT. WInMCDRAM is longer than that of DDR4 DRAM [24].
running these applications, compared to the penalty of lo&®me benchmarks processing graphs with large diameter and
latency memory accesses, the OS context switching overheaehll average degree, e.g. BF with road datasets, are more
is not significant. sensitive to the prolonged memory access latency and ctual

2) The Optimal Thread NumberWe define the optimal decelerated by the MCDRAM-based cache, because they have
thread number as the thread number achieving the best @elimited number of concurrently pending memory accesses
formance for each benchmark. Figure 8 describes the optiraald small memory footprints.
thread number for all applications with all datasets. ThHere o
no universal optimal thread number, e.g., the physical cdre Vectorization
number or the logic core number, that can always have the bestVe compiled graph programs with icc -O3 with various vec-
performance for all applications with all datasets. Differ torization choices: no vectorizatio®VX2 and AVX512 The
applications require distinctive optimal thread numbens fperformance of graph benchmarks with different vectoidrat
their own best performance. Moreover, even for the samgtions is shown in Figure 11, where all results are norradliz
application, the optimal thread numbers for various grapgh the no vectorization schenrOVEC AVX2improves the
datasets are different. If statically setting the threachbber graph processing performance by 44324% overNOVEC
to 256 for all application, Figure 7 shows KC with twitter7 isHowever, compared t&VX2 AVX512does not significantly
decelerated byt.1x. further boost the performance of graph applications. This i

3) Thread Placement and AffinityBecause graphBIG de- because the implementation of System G does not explicitly
pends on the OpenMP library, we can configure the threagpresent vertices or edges by floating point or integeryarra
placement and affinity biKMP_AFFINITY=X, granularity=Y Instead, vertices and edges are encapsulated into listeyos m

Twitter

o 2
8o
N
2 ®©
gE
= O
ot
cg KC
s B > > ') 9 I
> © INA NI SR Rl
2
[0} -
T o - /
O & . .
N © £ 1
T E 1 S
EL
co
Ot
2, GC 0 LI PR
2 X > ') {2 b N2 X > o) 1 I 42 M > e} {2 3
> © NP 2% N Rl > © A SR R\ > © NP % N ¥
thread # thread # thread #
Fig. 7. The KNL performance with varying thread numbers (noireal to the performance achieved by 256 threads).
1+ 1024 K
512 TC ~
8%36, — ! |UF_D_W:‘_D/4
Q GEA D-E\! - D—EQD—D—EM
£ 32 NG Om0 =000 C L PR
s '8
£ X DDDOND T+ LR DDODND T+ LR DDODD & | LXE DDDRD 5 1 LK DDONRD 5o LXK DDODD T
= —Svevev-v2g —Svevev-vw20g —Svevwv-vw24g —~Sveve-v-9g —Svevev-v-2g —~Svevev-vw20g
5 B5EEEEEE JLB8TEEEEE YBSTEEEEE JY885TE5EE BSTEEEEE JY88TCEEEE
o B0EQ9>>0022 TOEQD>>0022 BEEQD>>0022 BOEY>>002° BOED>>002F BOEQD>>00272
o) ZZ36TTITT §F ZZ/OTTIT F ZZ/LTTITT F ZZ/OTTITT F ZZL6TTITT F ZZ86TTIT TG
< TTco25588 £ TTcSo5588 £ TTco5588 £ TTL25588 &= TTeo5588 & TTLo5588 =
= $8¢%xapn T J8¢%°xand T S3¢%%°copd T S3¢%saps T S3%°%°zams T S88%zamd T
"5 8395 £ °%¢ 388% £ SFg 389% £ %5 389 £ S 339G £ FF5 53%Y ¢
6 °Pcc 8 6 °°cc 8 6 °°Pcc 8 6 °P%cc 8 6 °Pcc 8 6 °°cc 8
<] e <) ge o eg o] ee IS ee o ge
172 X X 2] X X 2] X X 2] X X 172 X X 2] X X

Fig. 8. The optimal thread number for all benchmarks with albdats

= 20 Il Compact-Thread [~ 104
§ 1.8 [scatter-Core — e =
g I scatter-Thread g09 I
N 208 I
E 207 | —
£ g | || | | [| || |
< 506 I -AII-to»AIII:lHemisphere-SNCZ-SNC4
BF ss KC GC TC PR Sos | NS WY WO WO W
Fig. 9. Performance comparison between various configusatigrthread BF SS KC GC TC
placement and affinity (normalized to Compact-Core). Fig. 12. Performance comparison between different caché¢ecing modes
normalized toQuadranj.
- 1.6
51.4' F. Cache Clustering Mode
9} 1 . .
2127 The performance comparison between various cache clus-
1.0 . .) .
%02- tering modes is shown in Figure 12, where all results are
208

€ ¢ R normalized to Quadrant. As explained in Section [I-D3, agion

s all hardware-managed modes includisiirto-All, Hemisphere

Fig. 10. Performance comparison between DDR4 and MCDRAM (nlizeth i i

to DDR4 DRAM main memory without MCDRAM) gnd Quadrant Quadrant achieves the best performance, since
it can keep both L2 accesses and memory accesses served

within the local quadrant on KNL. Two software-managed

in graph frameworks, and thus it is difficult to vectorizesae Modes ENC-2andSNC-4 have even worse graph processing
data structure on KNL. Moreover, most graph datasets we ufgjformance, since benchmarks in graphBIG do not have

are sparse, so they can barely be improved by widX512 NUMA-awareness and have to pay huge penalty for frequent
SIMD instructions. communications between different NUMA regions. SNC-4

offers four NUMA regions, therefore, compared to SNC-2,
it degrades the graph application performance more by large
overhead inter-NUMA-region communications.

09 ¢ 00 ap e s «

oF-

4.5

“QC; 4.0 I AvX2 _ [—JFront-End Bound Il Bad Speculation [___] Retiring [l Back-End Bound

S L Avxs12 R

g2 S —

259 (I —

g KC [T I

5157 ST i I

“ 10 . B —
BF SS KC GC TC PR 0 20 20 60 20 10(

Fig. 11. Performance comparison between AVX2 and AVX512 (ntized execution time breakdown (%)

to no vectorization NOVEQ. Fig. 13. KNL execution time breakdown (with twitter7).

+ T 2 1.4 dos-renyi
;10 5 1.3 M 10 515 =
- 0.8 - 1.6 :lzo o) 10 I highly-skewed
& & 141 . 30 Ry
© 0.6 1.2 = 0.8
£ E £ 06
204 L2039 S0.4
BF SS KC GC TC PR BF SS KC GC TC PR BF SS KC GC TC PR
(a) Vertex (normalized to 100K). (b) Degree (normalized to 10). (c) Skewness (normalized to ErstRényi).

Fig. 14. The KNL performance with various R-MAT datasets.

G. Execution Time Breakdown imbalance and throughput degradation, when their datasets

To understand bottlenecks of applications, we show KNIore skewed.
execution time breakdown of all benchmarks with twitter7
graph input in Figure 138ad Speculatiotis the time stall due _
to branch mis-predictionRetiring denotes the time occupied N this paper, we present a performance and power charac-
by the execution of useful instruction§ront-End Bound terization study to show the potential of KNL MIC processors
indicates the time spent by fetching and decoding inswasti ©n parallel graph processing. We further study the impact
while Back-End Boundneans the waiting time due to a lackof KNL arch|tecturaI.mnovatlons, such as many OoO cores,
of required resources for accepting more instructions & tYPUS, cache clustering modes and MCDRAM, on the perfor-
back-end of the pipeline, e.g., data cache misses and mg]ﬁnce_of multi-threaded graph applications. To fully aéli
memory accesses. It is well known that graph applicatioas dfNLS, in future, we need to overcome challenges from both
extremely memory intensive and have irregular data acsesderdware angle and software perspective. _

The breakdown of execution time on KNL also supports this First, from hardware angle, KNL supplies many architec-
observation. For KC and GC; 90% execution time is used {ural features that can be configured by knobs. Differerpigra

to wait for back-end stalls. Although in Figure 10, the 16G@Pplications may favor different configurations. For imst,
MCDRAM-based cache improves the performance of KC arflifferent graph benchmarks require distinctive numbers of
GC by > 10% on average, we anticipate a larger Capacigjhreads to achieve the best performance. Furthermore, some
MCDRAM-based cache can further boost their performanc%?plicationS benefit from high bandwidth MCDRAM, others

especially when processing large graph datasets. may be improved by low latency DDR4 DRAM. Therefore,
it is vital to have auto-tuning tools to search the optimal

H. Dataset Sensitivity Analysis configuration of these knobs to achieve the best performance
We generated scale-free graphs (R-MAT [6]) with varyingn KNLs. Previous works propose exhaustive iteration-thase
numbers of vertices, average vertex degrees and vertex digtimizations [9], [16] and machine-learning-based tgnin
tributions by PaRMAT generator [14]. The dataset sensjtivitechniques [11], [18], [33]. For KNLs, we believe that fu-
studies on KNL are shown in Figure 14. Among three Rure auto-tuning schemes have to consider not just the MIC
MAT parameters ¢, b and¢) [6], we always enforced = ¢ architecture, but the heterogeneous main memory system.
for symmetry. To produce different skewnesses, we set theSecond, from software perspective, though a state-o&the-
ratio (skewnegsbetweena andb to 1 (Erdds-Rényi model), multi-threaded graph framework fully optimized for tradital
3 (real-world) and 8 (highly-skewed). In Figure 14(a), wenulti-core CPUs can run on KNLs, we observe that hard-
fixed the average vertex degree to 20 and skewnesso 3. ware resources such as VPUs are underutilized and advanced
With an increasing number of vertices, the performance lof @oftware-managed architectural features, e.g., the SN&t:He
benchmarks degrades more or less, mainly because DTLB a&hgstering mode, may even hurt the performance of graph
L2 miss rates are increased by larger graph sizes. We fixed #émpplications. Previous efforts [7], [13] optimize graphtala
vertex number to 1M and thekewnesto 3 in Figure 14(b). All structures and primitives to better utiliZ/X512instructions
applications demonstrate better performance with emgrgiand vectorize graph applications like breadth first seat@h, [
average vertex degree, since more edges per vertex leagdge rank [8] and graph coloring [10]. In future, instead of
increased L2 hit rate. Particularly, the performance of T@ptimizing a single benchmark, we need to create a fully vec-
and PR increases more obviously, since they operate tonized graph framework offeringvX512friendly primitives
neighbor sets in vertex properties and higher vertex degreesupport a wide variety of graph applications on KNLs.
brings more accesses within vertices. In Figure 14(c), vie $doreover, we should incorporate a OS-based [21] or library-
the number of vertices and the average vertex degree to h&sed [20] NUMA-aware memory management technique into
and 20 respectively. And we explored tBkewnessamong future graph frameworks, so that the graph applications can
1, 3 and 8. For traversal-based applications, BF and SS,benefit from the lowest local memory access latency provided
graph skewness increases and graph eccentricity decreasgsSNC-4 without incurring large communication overhead
the application performance increases. Higher-skewephgrabetween NUMA regions. The future graph frameworks on
have smaller diameter resulting in faster traversals. Gn tKNLs also need to be rewritten with heterogeneous memory
contrary, the other graph benchmarks suffer from seveeat losupporting libraries such as MEMKIND to allocate latency

VI. CONCLUSION AND FUTURE WORK

sensitive pages to DDR4 DRAMs and bandwidth sensitiyes] H. Leather, E. Bonilla, and M. O'Boyle, “Automatic featigeneration
pages to MCDRAMSs.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

ACKNOWLEDGMENT

IU PHI

REFERENCES

(22]

M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “Crono: A benchmauiite
for multithreaded graph algorithms executing on futuristicltroares,”
in IEEE International Symposium on Workload Characterizat@015,
pp. 44-55.

M. Ahmad and O. Khan, “Gpu concurrency choices in graphydita,”

in |IEEE International Symposium on Workload Characterizati2016,
pp. 1-10.

T. Barnes, B. Cook, J. Deslippe, D. Doerfler, B. Frieserti¥, T. Kurth,
T. Koskela, M. Lobet, T. Malas, L. Oliker, A. Ovsyannikov, Sarje,
J. L. Vay, H. Vincenti, S. Williams, P. Carrier, N. Wichmann, Wagner,
P. Kent, C. Kerr, and J. Dennis, “Evaluating and optimizing tiersc

workload on knights landing,” irinternational Workshop on Perfor- [26]

mance Modeling, Benchmarking and Simulation of High Pentomce
Computer System2016, pp. 43-53.

S. Beamer, K. Asanovic, and D. Patterson, “Locality exist graph
processing: Workload characterization on an ivy bridgeesgrin IEEE
International Symposium on Workload Characterizatia15, pp. 56—
65.

M. Burtscher, R. Nasre, and K. Pingali, “A quantitativeidy of irregular
programs on gpus,” inEEE International Symposium on Workload
Characterization 2012, pp. 141-151.

D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A resive model
for graph mining,” inSIAM International Conference on Data Mining

2004. [30]

L. Chen, X. Huo, B. Ren, S. Jain, and G. Agrawal, “Efficiamd simpli-
fied parallel graph processing over cpu and mic,JEEE International
Parallel and Distributed Processing Symposju2015, pp. 819-828.

L. Chen, P. Jiang, and G. Agrawal, “Exploiting recent siardhitectural
advances for irregular applications,” imternational Symposium on
Code Generation and Optimizatip@016, pp. 47-58.

Y. Chen, S. Fang, Y. Huang, L. Eeckhout, G. Fursin, O. Temand

C. Wu, “Deconstructing iterative optimization&CM Transactions on [32]

Architecture and Code Optimizatipmol. 9, no. 3, pp. 21:1-21:30, Oct.
2012.

M. Deveci, E. G. Boman, K. D. Devine, and S. Rajamanickanar-P [33]

allel graph coloring for manycore architectures,”|IEEE International
Parallel and Distributed Processing Symposiju2916, pp. 892-901.
A. Ganapathi, K. Datta, A. Fox, and D. Patterson, “A c&ksemachine

learning to optimize multicore performance,” WSENIX Conference on [34

Hot Topics in Parallelism2009, pp. 1-1.

J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guesttirow-
ergraph: Distributed graph-parallel computation on natgraphs,” in
USENIX Conference on Operating Systems Design and Imptaticen
2012, pp. 17-30.

P. Jiang, L. Chen, and G. Agrawal, “Reusing data redmgdion
for efficient simd parallelization of adaptive irregular &pations,” in
International Conference on Supercomputi@®16, pp. 16:1-16:10.

F. Khorasani, R. Gupta, and L. N. Bhuyan, “Scalable sgifatient
graph processing on gpus,” imternational Conference on Parallel
Architectures and Compilation Techniqué915, pp. 39-50. [
F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, “Cuskartex-
centric graph processing on gpus,’liternational Symposium on High-
performance Parallel and Distributed Computin@014, pp. 239-252.

P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. Dawds “Prac-
tical exhaustive optimization phase order exploration avaluation,”
ACM Transactions on Architecture and Code Optimizatii. 6, no. 1,
pp. 1:1-1:36, Apr. 2009.

A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: lga-scale graph
computation on just a pc,” iINSENIX Conference on Operating Systems
Design and Implementatior2012, pp. 31-46.

(29]

We gratefully acknowledge support from the Intel Parallg)
Computing Center (IPCC) grant, NSF OCI-114932 and CIF-
DIBBS 143054. We appreciate the support from
FutureSystems team and ISE Modelling and Simulation Lal

=
(23]
[24]

(25]

(27]
(28]

[29]

(31]

(35]

(36]

for machine learning based optimizing compilation,” IBEE/ACM
International Symposium on Code Generation and Optinora2009,
pp. 81-91.

J. Leskovec and A. Krevl, “SNAP Datasets: Stanford ¢ametwork
dataset collection,” http://snap.stanford.edu/data, 2014.

S. Li, T. Hoefler, and M. Snir, “Numa-aware shared-memorijiece
tive communication for mpi,” ininternational Symposium on High-
performance Parallel and Distributed Computin@013, pp. 85-96.

T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficteoperat-
ing system scheduling for performance-asymmetric multi-cochitec-
tures,” in ACM/IEEE Conference on Supercompufi®07, pp. 53:1-
53:11.

Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyroland J. M.
Hellerstein, “Distributed graphlab: A framework for machilearning
and data mining in the cloudProceedings of the VLDB Endowment
vol. 5, no. 8, pp. 716-727, APR 2012.

G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Ho N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale gragit@ssing,”
in ACM SIGMOD International Conference on Management of Data
2010, pp. 135-146.

J. D. McCalpin, “Memory latency on the intel xeon phi x2Q@l proces-
sor,” http://sites.utexas.edu/jdm4372/tag/memory-lateridgec. 2016.

R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Angntiioducing
the graph 500,” irCray User’'s Group (CUG)2010.

L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Grapigp
Understanding graph computing in the context of industoaitsons,” in
International Conference for High Performance ComputiNgfworking,
Storage and Analysj015, pp. 69:1-69:12.

D. Nguyen, A. Lenharth, and K. Pingali, “A lightweightfrastructure
for graph analytics,” irnACM Symposium on Operating Systems Princi-
ples 2013, pp. 456-471.

M. A. O'Neil and M. Burtscher, “Microarchitectural prmance char-
acterization of irregular gpu kernels,” IEEE International Symposium
on Workload Characterizatiqr2014, pp. 130-139.

A. Sodani, “Knights landing (knl): 2nd generation i@ xeon phi
processor,” iNEEE Hot Chips Symposiun2015, pp. 1-24.

T. Suzumura, K. Ueno, H. Sato, K. Fujisawa, and S. MatayudRer-
formance characteristics of graph500 on large-scale blig&d environ-
ment,” in IEEE International Symposium on Workload Characterizatio
2011, pp. 149-158.

|. Tanase, Y. Xia, L. Nai, Y. Liu, W. Tan, J. Crawford, a@d-Y. Lin, “A
highly efficient runtime and graph library for large scalegiranalytics,”

in Workshop on GRAph Data Management Experiences and Systems

2014.

Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. MeFson,
“From "think like a vertex" to "think like a graph”,Proceedings of the
VLDB Endowmentvol. 7, no. 3, pp. 193-204, Nov. 2013.

A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsiyg “A
scalable auto-tuning framework for compiler optimizationj’ IEEE
International Symposium on Parallel&Distributed Processi2009, pp.
1-12.

] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightvight

performance-oriented tool suite for x86 multicore environtagnin
International Workshop on Parallel Software Tools and Thdtastruc-
tures 2010.

Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. @mns,
“Gunrock: A high-performance graph processing library oa tipu,”

in ACM SIGPLAN Symposium on Principles and Practice of Paralle
Programming 2015, pp. 265-266.

Q. Xu, H. Jeon, and M. Annavaram, “Graph processing orsg¢here
are the bottlenecks?” itEEE International Symposium on Workload
Characterization 2014, pp. 140-149.

1 J. Zhong and B. He, “Medusa: A parallel graph processipstem on

graphics processors®CM SIGMOD Recordvol. 43, no. 2, pp. 35-40,
Dec. 2014.

