
Performance Characterization of Multi-threaded Graph Processing
Applications on Many-Integrated-Core Architecture

Lei Jiang Langshi Chen Judy Qiu
School of Informatics, Computing, and Engineering, Indiana University Bloomington

{jiang60, lc37, xqiu}@indiana.edu

Abstract—In the age of Big Data, parallel graph processing has
been a critical technique to analyze and understand connected
data. Meanwhile, Moore’s Law continues by integrating more
cores into a single chip in deep-nano regime. Many-Integrated-
Core (MIC) processors emerge as a promising solution to process
large graphs. In this paper, we empirically evaluate various
computing platforms including an Intel Xeon E5 CPU, an
Nvidia Tesla P40 GPU and a Xeon Phi 7210 MIC processor
codenamed Knights Landing (KNL) in the domain of parallel
graph processing. We show that the KNL gains encouraging
performance and power efficiency when processing graphs, so
that it can become an auspicious alternative to traditional
CPUs and GPUs. We further characterize the impact of KNL
architectural enhancements on the performance of a state-of-the-
art graph framework. We have four key observations:❶ Different
graph applications require distinctive numbers of threads to
reach the peak performance. For the same application, various
datasets need even different numbers of threads to achieve the
best performance.❷ Not all graph applications actually benefit
from high bandwidth MCDRAMs, while some of them favor
low latency DDR4 DRAMs. ❸ Vector processing units executing
AVX512 SIMD instructions on KNLs are underutilized when
running the state-of-the-art graph framework. ❹ The sub-NUMA
cache clustering mode offering the lowest local memory access
latency hurts the performance of graph benchmarks that are lack
of NUMA awareness. At last, we suggest future works including
system auto-tuning tools and graph framework optimizations to
fully exploit the potential of KNL for parallel graph processing.

I. I NTRODUCTION

Big Data explodes exponentially in the form of large-scale
graphs. Graph processing has been an important technique to
compute, analyze and visualize connected data. Real-world
large-scale graphs [26], [35] include social networks, trans-
portation networks, citation graphs and cognitive networks,
which typically have millions of vertices and millions to
billions of edges. Because of the huge graph size, it is
natural for both industry and academia to develop parallel
graph frameworks to accelerate graph processing on various
hardware platforms. A large number of CPU frameworks, e.g.,
Giraph [32], Pregel [23], Galois [27], PowerGraph [12] and
GraphLab [22], have emerged for scalable in-memory graph
processing. Recent works propose GPU frameworks such as
CuSha [15], Medusa [37], LonestarGPU [5] and Gunrock [35]
to perform high throughput graph processing on GPUs.

In CPU frameworks, graphs are partitioned, distributed and
processed among multiple nodes [12], [22], [23], [32] by mes-
sage passing schemes or computed locally on a shared memory
node [26], [27]. Distributed graph processing is notorious
for frequent communications between computations on each

vertex or edge [12], [26], [27]. In a large-scale cluster, frequent
communications are translated to a huge volume of messages
across multiple nodes [22], [23], [32], seriously limitingthe
performance of graph processing. Even a single Mac-Mini
SSD-based laptop potentially can outperform a medium-scale
cluster for graph processing [17]. On a shared memory multi-
core CPU node, communications are interpreted to loads and
stores in memory hierarchy [26], [27]. The core efficiency of
a shared memory node is averagely 100× higher than that
in a cluster [30]. However, compared to GPUs, the graph
computing throughput on CPUs is still constrained by the
limited number of cores.

GPU frameworks capture graph processing parallelism by
mapping and computing vertices or edges on thousands of
tiny GPU cores [5], [35]. Although graph applications exhibit
irregular memory access patterns, frequent thread synchro-
nizations and data dependent control flows [28], GPUs still
substantially boost the performance of graph processing over
CPUs. However, the performance of graph applications on
GPUs is sensitive to graph topologies. When traversing graphs
with large diameter and small degree, GPUs exhibit poor
performance due to the lack of traversal parallelism [35].
Moreover, in some commercial applications, simple opera-
tions, such as adding or deleting an edge in a graph, may
cost a significant portion of application execution time [26],
but it is difficult for GPUs to support such basic operations.

Recently, Intel releases Xeon Phi MIC processors as an
alternative to traditional CPUs and GPUs for the high per-
formance computing market. A MIC processor delivers GPU-
comparable computing throughput and CPU-like sequential
execution power. Compared to GPUs, a MIC processor can
easily support basic graph operations, e.g., inserting/deleting a
node/edge, since it is fully compatible with the X86 instruction
set. In this paper, we focus on the performance characterization
of multi-threaded graph applications on an Intel Xeon Phi
(2nd generation) processor - KNL [29]. Our contributions are
summarized as follows:

• We empirically evaluate a state-of-the-art graph frame-
work on three hardware platforms: an Intel Xeon E5 CPU,
an Nvidia Tesla P40 GPU and a KNL MIC processor.
We show that the KNL demonstrates encouraging perfor-
mance and power efficiency when running multi-threaded
graph applications.

• We further characterize performance details of multi-
threaded graph benchmarks on KNL. We measure and an-
alyze the impact of KNL architectural enhancements such

as many out-of-order cores, simultaneous multithreading,
cache clustering modes, vectorization processing units
and 3D stacked MCDRAM on parallel graph processing.
We have four key observations:❶ Different graph appli-
cations require distinctive numbers of threads to achieve
their best performance. For the same benchmark, various
datasets ask for different numbers of threads to attain
the shortest execution time.❷ Not all graph applications
actually benefit from high bandwidth MCDRAMs, while
some of them favor low latency DDR4 DRAMs.❸
VPUs executing AVX512 SIMD instructions on KNLs
are underutilized when processing graphs.❹ The sub-
NUMA cache clustering mode offering the lowest local
memory access latency hurts the performance of graph
benchmarks that are lack of NUMA awareness.

• For future work, we suggest possible system auto-tuning
tools and framework optimizations to fully exploit the
potential of KNL for multi-threaded graph processing.

II. BACKGROUND

A. Graph Processing Frameworks and Benchmark Suite

The rapid and wide deployment of graph analytics in real-
world diversifies graph applications. A lot of applicationssuch
as breadth first search incorporate graph traversals, whileother
benchmarks such as page rank involve intensive computations
on vertex properties. Though low-level hardwired implementa-
tions [1], [4], [8], [10], [13] have demonstrated high computing
efficiency on both CPUs and GPUs, programmers need high-
level programmable frameworks to implement a wide vari-
ety of complex graph applications to solve real-world prob-
lems. Therefore, graph processing heavily depends on specific
frameworks composed of data structures, programming models
and basic graph primitives to fulfill various functionalities.
Previous research efforts propose many graph frameworks on
both CPUs [12], [22], [26], [27] and GPUs [5], [15], [26], [37]
to hide complicated details of operating on graphs and provide
basic graph primitives. Most workloads spend50% ∼ 76% of
execution time within graph frameworks [26].

The graph applications we studied in this paper are from a
state-of-the-art graph benchmark suite,graphBIG [26]. The
suite is implemented with IBMSystem-Gframework that
is a comprehensive graph library used by many industrial
solutions [31]. The framework adopts the vertex centric pro-
gramming model, where a vertex is a basic element of a graph.
Properties and outgoing edges of a vertex are attached to the
same vertex data structure. The data structure of all vertices is
stored in an adjacency list, and outgoing edges inside a vertex
data structure also form an adjacency list of edges. Themajor
reason to choose graphBIG is that benchmarks in this suite
have a CPU OpenMP version and a GPU CUDA version shar-
ing the same data structure and vertex centric programming
model provided by System-G. In this way, we can minimize
the impact of differences between CPU and GPU graph
processing frameworks, and focus on only differences between
various hardware computing platforms. On the contrary, other
graph suites [1], [4], [5] implement graph applications without

using a general framework or by using different frameworks
on CPUs and GPUs respectively. Particularly, as one of the
best-known graph benchmark suites, Graph500 [25] provides
only limited number of CPU workloads, since it is designed
for only CPU-based system performance ranking.

B. Target Graph Benchmarks

Graph applications exhibit diversified program behaviors.
Some workloads, e.g., breadth first search, are traversal-based.
Only a subset of vertices is typically active at a given point
during the execution of this type of applications. They often
introduce many memory accesses but limited arithmetic oper-
ations. Their irregular memory behavior results in extremely
poor locality in memory hierarchy. Some graph benchmarks
operating on rich vertex properties, e.g., page rank and triangle
count. They incorporate heavy arithmetic computations on
vertex properties and intensive memory accesses leading to
hybrid workload behaviors. Most vertices are active in all
stages of their executions. We selected, compared and studied
six common graph benchmarks in this paper. We introduce
their details as follows:

• Breadth First Search traverses a graph by starting from
a root vertex and exploring neighboring nodes first. The
traversal parallelism is exploited by vertex capture where
each thread picks a vertex and searches its neighbors.

• K-Core finds a maximal connected sub-graph where all
vertices have≥ K degree. It follows Matula & Beck’s
algorithm [26].

• Single Source Shortest Pathcalculates the minimum
cost paths from a root vertex to each vertex in a given
graph by Dijkstra’s algorithm [26].

• Graph Coloring partitions a graph into independent sets.
One set contains vertices sharing the same color. It adopts
Luby-Jones’ algorithm [26].

• Page Rankuses the probability distribution to compute
page rankings. The rank of each vertex is computed by
PR(u) =

∑
Nu

PR(v)
E(v) , where thePR of a vertex (u) is

decided by thePR of each vertex (v) in its neighbor set
(Nu) divided by its outgoing edge numberE(v).

• Triangle Count measures the number of triangles that are
formed in a graph when three vertices are connected to
each other. It is implemented by Schank’s algorithm [26].

C. Graph Topology

The performance of graph applications is heavily influenced
by the topology of graph datasets. We studied how topologies
impact the benchmark performance via following metrics.
The eccentricity ǫ(v) of a vertex v in a given connected
graph G is the maximum graph distance betweenv and
any other vertexu of G. The diameter d of a graph is
the maximum eccentricity of any vertex in the graph (d =
maxv∈V ǫ(v)). TheFiedler eigenvalueof the graph (F (G)) is
the second smallest eigenvalue of the Laplacian matrix ofG.
The magnitude ofF (G) exhibits how wellG is connected.
For traversal-based applications such as breadth first search,
traversal iteration number is proportional to the eccentricity

and Fiedler eigenvalue. Thevertex degreeindicates the number
of edges connected to a vertex. The average vertex degree and
the vertex degree distribution of a graph reflect the amount of
parallelism. Large vertex degree variations introduce substan-
tial load imbalance during graph traversals. Real-world graphs
can be categorized into two types: the first has large diameter
with evenly distributed degree, e.g., road networks; and the
second includes small eccentricity graphs with a subset of
few extremely high-degree vertices, e.g., social networks. We
chose different datasets from both categories, and generated
several synthesized graphs with diameters varying from small
to huge in Section IV.

D. Intel Xeon Phi Architecture

1) Overall Architecture:Xeon Phi MIC processors are fully
compatible with the x86 instruction set and hence support
standard parallel shared memory programming tools, models
and libraries such as OpenMP. The KNL [29] is the 2nd
generation architecture fabricated by the 14nm technologyand
has been adopted by several data centers such as the national
energy research scientific computing center [3].

core

miscEDC

PCIe

d
d

r4 mc
Tile

mcdram

mcdram

mcdram

mcdram2D Mesh

2 VPU

CHA

1MB

L2
core

2 VPU

Tile structure

Fig. 1. Xeon Phi KNL (MC: DDR4 controller; EDC: MCDRAM controller).

The KNL detailed architecture is shown in Figure 1. It is
built by up to 72 Atom (Silvermont) cores, each of which is
based on a low operating frequency 2-wide issued out-of-order
(OoO) micro-architecture supporting four concurrent threads,
a.k.a, simultaneous multithreading (SMT). Additionally,every
core has two vector processing units (VPUs) that support
SIMD instructions such asAVX2 and AVX512 that is a new
512-bit advanced vector extension of SIMD instructions for
the x86 instruction set. A VPU can execute up to 16 single
precision operations or 8 double precision floating point op-
erations in each cycle. Two cores form a tile sharing a 1MB
16-way L2 cache and a caching home agent (CHA), which is
a distributed tag directory for cache coherence. All tiles are
connected by a 2D Mesh network-on-chip (NoC).

ddr4mcdram
ddr4

mcdram p
h

y
sica

l

a
d

d
re

ss

flatcache

ddr4

mcdram p
h

y
sica

l

a
d

d
re

ss

hybrid

mcdram

Fig. 2. Configurations on MCDRAM.

2) MCDRAM: The KNL main memory system supports
up to 384GB of DDR4 DRAM and 8∼16GB of 3D stacked
MCDRAM. The MCDRAM significantly boosts the memory
bandwidth, but the access latency of MCDRAM is actually
longer than that of DDR4 DRAM [24]. As Figure 2 shows,
MCDRAM can be configured as a parallel memory component

to DDR4 DRAM in main memory (flat mode), a hardware-
managed L3 cache (cache mode) or both (hybrid mode).
The flat mode offers high bandwidth by MCDRAM and low
latency by DDR4 DRAM. However, programmers have to
track the location of each data element and manage software
complexity. On the contrary, thecachemode manages MC-
DRAM as a software-transparent direct-mapped cache. The
hybrid mode combines the other two modes.

All-to-All

❶

❸

Quadrant(Hemisphere) SNC-4(2)

❶
❷

❸

❶

❸
❷

❹ ❹
❷

❹

Fig. 3. Configurations on Cache Clustring.

3) Cache Clustering Mode:Since all KNL tiles are con-
nected by a Mesh NoC where each vertical/horizontal link is
a bidirectional ring, all L2 caches are maintained coherentby
the MESIF protocol. To enforce cache coherency, KNL has a
distributed cache tag directory organized as a set of per-tile tag
directories (shown as CHA in Figure 1) that record the state
and location of all memory lines. For any memory address, by
a hash function, KNL identifies which tag directory recording
it. As Figure 3 shows, the KNL cache can be operated in
five modes includingAll-to-All, Hemisphere, Quadrant, SNC-
2 andSNC-4. When❶ a core confronts a L2 miss,❷ it sends
a request to look up a tag directory.❸ The directory finds a
miss and transfers this request to a memory controller.❹ At
last, the memory controller fetches data from main memory
and returns it to the core enduring the L2 miss. In theAll-
to-All mode, memory addresses are uniformly hashed across
all tag directories. During a L2 miss, the core may send a
request to a tag directory physically located in the farthest
quadrant from the core. After the directory finds a miss, it
may also send this request to a memory controller located in
a third quadrant. Therefore, a L2 miss may have to traverse
the entire Mesh to read one line from main memory. The
Quadrant(Hemisphere) mode divides a KNL chip into four
(two) parts. During a L2 miss, the core still needs to send a
request to every on-chip tag directory, but the data associated
to the target tag directory must be in the same part that the
tag directory is located. Memory accesses from a tag directory
are managed by its local memory or cache controller. The
Hemisphereand Quadrant modes are managed by hardware
and transparent to Operating System (OS). In contrast, the sub-
NUMA-clustering (SNC-2/4) also separates the chip into two
or four parts and exposes each as a separate NUMA domain
to OS. During a L2 miss, the core only needs to send a request
to its local tag directory that also transfers this request to the
local memory controller if there is a directory miss. Therefore,
the SNC-4mode has the lowest local memory access latency,
but longer memory latency than that of theQuadrant mode
when a request crosses NUMA boundaries. This is because
the requests traveling to another NUMA region have to be
managed by OS or applications themselves.

III. R ELATED WORK

A recent graph characterization work on CPUs [4] identifies
that eight fat OoO Ivy Bridge cores fail to fully utilize off-
chip memory bandwidth when processing graphs, since the
small instruction window cannot produce enough outstanding
memory requests. In contrast, the KNL MIC processor can sat-
urate main memory bandwidth by> 64 small OoO cores, each
of which supports SMT and has two VPUs. More research
efforts [2], [5], [28], [36] analyze GPU micro-architectural de-
tails to identify bottlenecks of graph benchmarks. In this paper,
we analyze and pinpoint inefficiencies on micro-architectures
of KNL when running multi-threaded graph applications. Pre-
vious physical-machine-based works [7], [13] find that the first
generation Xeon Phi, Knight Corner, has poor performance
for graph applications due to its feeble cores. Although the
latest simulator-based work [1] characterizes the performance
of multi-threaded graph applications on a MIC processor
composed of 256 single-issue in-order cores, it fails to consider
the architectural enhancements offered by KNLs, e.g., OoO
cores, SMT, cache clustering modes, VPUs and MCDRAM.
To our best knowledge, this work is the first to characterize and
analyze the performance of multi-threaded graph applications
on the KNL MIC architecture.

IV. EXPERIMENTAL METHODOLOGY

Graph benchmarks. In this paper, we adopted and studied
six benchmarks including breadth first search (BF), single
source shortest path (SS), graph coloring (GC), k-core (KC),
triangle count (TC) and page rank (PR) from graphBIG [26].
Each benchmark contains a CPU OpenMP version and a GPU
CUDA version. Due to the absence of PR GPU code in graph-
BIG, we created a vertex-centric GPU PR implementation
based on a previous GPU PR benchmark [5] and the System-
G framework. We compiled codes on CPU by icc (17.0.0)
with -O3, -MIC-AVX-512 and Intel OpenMP library. Through
the commandnumactl, we chose to run CPU benchmarks in
DDR4 DRAM under the flat mode. On GPU, we compiled
programs by nvcc (V8.0.61) with CUDA-8.0. Since the size
of large graph datasets exceeds the maximum physical GPU
memory capacity, we usedcudaMallocManagedfunction to
allocate data structures into a CUDA-managed memory space
where both CPUs and GPUs share a single coherent address
space. In this way, CUDA libraries transparently manage GPU
memory access, data locality and data migrations between
CPU and GPU. The OS we used is Ubuntu-16.04.

TABLE I
BENCHMARK DATASETS.

Dataset Abbr. Vertices Edges Degree IterBF

roadNet_CA
road

1.97M 5.53M 2.81 665
roadNet_TX 1.38M 3.84M 2.27 739
soc-Slashdot0811

social
0.08M 0.9M 11.7 18

ego-Gplus 0.11M 13.6M 127.1 6
delaunay_n18

delaunay
0.26M 1.57M 6.0 223

delaunay_n19 0.52M 3.15M 6.0 296
kron_g500-logn17

kron
0.11M 10.23M 78.0 3

kron_g500-logn18 0.21M 21.17M 80.7 3
twitter7

large
17M 0.48B 4.6 23

com-friendster 65.6M 1.81B 27.6 15

Graph datasets. The graph inputs for our simulated bench-
marks are summarized in Table I, whereDegree denotes the
average vertex degree of the graph andIterBF describes the
average BF iteration number computed by searching from 10K
random root vertices.roadNet_XX(road) are real-world road
networks where most vertices have an outgoing degree below
4. soc-Slashdot0811and ego-Gplus(social) are two social
networks typically having scale-free vertex degree distribution
and small diameter.delaunay(delaunay) datasets are Delau-
nay triangulations of random points in the plane that also
have extremely small outgoing degrees. Like social networks,
kronecker(kron) datasets have large average vertex outgoing
degree and can be traversed by only several BF iterations. We
also included two large graph datasets (large),twitter7 and
com-friendster, each of which contains millions of vertices
and billions of edges. The size of graph datasets is mainly
decided by the number of edges, because the average degree
of graphs we chose is≥ 2. We selected graph datasets from
the Stanford SNAP [19]. We also used the synthetic graph
generator, PaRMAT [14], in dataset sensitivity studies.

TABLE II
MACHINE CONFIGURATIONS.

Hardware Description

Intel Xeon launched in Q2’16, 8-core@2.5GHz, 2T/core,
E5-4655v4 3.75MB L3/core, 512GB 68GB/s DDR4 DRAM

thermal design power (TDP) 135W
Nvidia launched in Q2’16, 1920-cudaCore@1.5GHz,
GTX1070 peak SP perf: 5783 GFLOPS, 8GB 256GB/s

GDDR5, PCIe 3.0×16 to CPU, TDP 150W
Nvidia Tesla launched in Q3’16, 3840-cudaCore@1.3GHz,
P40 peak SP perf: 10007 GFLOPS, 24GB 346GB/s

GDDR5, PCIe 3.0×16 to CPU, TDP 250W
launched in Q2’16, 64-core@1.3GHz, 4T/core,

Intel Xeon Phi 0.5MB L2/core, peak SP perf: 5324 GFLOPS,
7210 (KNL) 8 channels 16GB 400GB/s 3D MCDRAM,

512GB 102GB/s DDR4 DRAM, TDP 230W
Disk 4TB SSD NAND-Flash

Hardware platforms . We chose and compared three server-
level hardware platforms including a Xeon E5 CPU, a Tesla
P40 GPU and a Xeon Phi 7210 (KNL) MIC processor. Since,
compared to KNL, Tesla P40 achieves almost double peak
single point float (SPF) throughput, we also included an
Nvidia GTX1070 GPU having similar peak SPF throughput
in our experiments. The machine configurations are shown in
Table II. Both Xeon E5 and KNL have a 512GB DDR4 main
memory system, while P40 and GTX1070 are also hosted in
the Xeon E5 machine with 512GB DDR4 DRAM. The thermal
design power (TDP) values of Xeon E5, GFX1040, P40 and
KNL are 135W, 150W, 250W and 230W. TDP represents the
maximum amount of heat generated by a hardware component
that the cooling system can dissipate under any workload.

Profiling tools. We adopted Intel VTune Analyzer to collect
architectural statistics and likwid-powermeter [34] to profile
power consumption on CPU and KNL. The likwid-powermeter
is a tool for accessing RAPL registers on Intel processors, so
it is able to measure the power consumption of both CPU
package and DRAM memories. The register reading interval
we set in all experiments is1ms. For GPUs, we used Nvidia

roa
d

dela
una

y
soc

ialkronlarg
e

gme
an

100

101

102

GCKCSS
 GFX1070 P40 KNL

BF

roa
d

dela
una

y
soc

ialkronlarg
e

gme
an

100

101

102

103

roa
d

dela
una

y
soc

ialkronlarg
e

gme
an

100

101

102

103

104

roa
d

dela
una

y
soc

ialkronlarg
e

gme
an

100

101

102

PRTC

roa
d

dela
una

y
soc

ialkronlarg
e

gme
an

10-1

100

101

102

roa
d

dela
una

y
soc

ialkronlarg
e

gme
an

1
2
3
4
5
6
7
8
9

10
no

rm
al

ize
d

TE
PS

Fig. 4. Performance comparison between Xeon E5-4655v4, GeForce GTX1070, Tesla P40 and KNL (normalized to Xeon E5-4655v4).

visual profiler (nvprof) to collect both performance and power
characterization results. The performance results we reported
in Section V do not include the overhead of profiling tools on
CPU, GPU and KNL.

Metrics. We measured the performance of graph applica-
tions asTraversed Edges Per Second(TEPS) [25]. The TEPS
for non-traversing-based benchmarks, e.g., PR, is computed
by dividing the number of processed edges by the mean
time per iteration, since each vertex processes all its edges
in one iteration [25]. We aim to understand the performance
and power consumption of multi-threaded graph application
kernels, and thus all results ignore disk-to-memory and host-
to-device data transfer time during application initializations.
But we measured page faults on CPU and data transfers
between CPU and GPU inside application kernels.

V. EVALUATION

We cannot answer which type of hardware is the best for
shared memory parallel graph processing, since the platforms
we selected have completely different power budgets and hard-
ware configurations such as operating frequencies, core num-
bers, cache sizes and micro-architecture details. By allocating
more power budgets and hardware resources, theoretically
speaking, any type of platform can possibly outperform the
others. Our purpose of the comparison between KNL and other
types of hardware is to demonstrate the KNL MIC processor
achieves encouraging performance and power efficiency, and
thus it can become one of the most promising alternatives to
traditional CPUs and GPUs when processing graphs.

To investigate the KNL performance of parallel graph pro-
cessing, we empirically analyze the performance comparison
between four hardware platforms. And then, we characterize
performance details of six graph benchmarks on KNL. We
explain the impact of KNL architectural innovations such
as many OoO cores, SMT, VPU and MCDRAM on multi-
threaded graph applications.

A. Performance Comparison

The performance comparison between four hardware plat-
forms is shown in Figure 4, where all results are normalized
to the performance (TEPS) of Xeon E5 CPU. We configured
KNL cache clustering in the Quadrant mode and MCDRAM in
the cache mode. The KNL performance reported in this section
is achieved by its optimal thread configuration including thread
number and thread affinity. We also performed an exhaustive

search on all possible configurations on CPU and GPU to
attain and report the best performance.

The primary weakness of GPU is the load imbalance
problem introduced by its sensitivity to graph topologies in
traversal-based graph applications. For BF, GPUs achieve bet-
ter performance than KNL on graphs with small diameter and
large average vertex degree, e.g., social and kron. Huge traver-
sal parallelism exists in these graphs, and hence, the more
cores one platform has, the better performance it can achieve.
In this case, KNL is slower than GTX1070, although they
have similar peak SFP computing throughput. This is because
graph traversal operations can barely take advantage of VPUs
on KNL. However, compared to KNL, GPUs processes less
edges when traversing graphs with large diameter and small
average vertex degree, e.g., road and delaunay. There is little
traversal parallelism in these graphs, so the OoO cores of KNL
prevail due to their powerful sequential execution capability.
When processing large graphs, GPUs suffer from frequent data
migrations between CPU and GPU memories, due to their
limited GDDR5 memory capacity. Therefore, KNL shines on
these large graph datasets. P40 outperforms GTX1070 on all
graph inputs, because it has more CUDA cores and a larger
capacity GDDR5 memory system. As another traversal-based
graph benchmark, SS shares the same performance trend as
that of BF.

KC and GC are two applications operating on graph struc-
tures. Their computations involve a huge volume of basic
arithmetic operations, e.g., integer incrementing (decrement-
ing), on vertices or edges. A large number of CUDA cores
on GPUs support these massive arithmetic operations better
than a small number of KNL cores. GPUs can perform fine-
grained scheduling on warps to fully utilize CUDA cores,
while each KNL core can switch between only four threads,
each of which cannot be fully vectorized. Therefore, the GPU
performance is generally 10× better than that of KNL. For
GC, the improvement brought by thousands of CUDA cores on
P40 even mitigates the data transfer penalty due to its limited
GDDR5 memory capacity, i.e., P40 improves the processing
performance over KNL by 16.7% on large graph datasets.

As graph benchmarks computing on vertex properties,
TC and PR exhibit hybrid workload behaviors, since they
require not only graph traversals but also relatively heavy
arithmetic operations on vertex properties, e.g., multiply-
accumulate operations. In TC, arithmetic operations dominate
the performance of graph processing, so compared to KNL,
GPUs boost the application performance by 112%∼145%

CPU
C-D

RAM
GFX

107
0

G-D
RAM P40

P-D
RAM KNL

K-D
RAM

0

50

100

150

200

250
Po

w
er

 (W
at

t)

CPU
C-D

RAM
GFX

107
0

G-D
RAM P40

P-D
RAM KNL

K-D
RAM

0

50

100

150

200

250
BF_largeBF_roadBF_social

CPU
C-D

RAM
GFX

107
0

G-D
RAM P40

P-D
RAM KNL

K-D
RAM

0

50

100

150

200

250

CPU
C-D

RAM
GFX

107
0

G-D
RAM P40

P-D
RAM KNL

K-D
RAM

0

50

100

150

200

250
GC_large

Fig. 5. Power comparison between Xeon E5-4655v4, GeForce GTX1070, Tesla P40 and KNL.

roa
d

dela
una

y
soc

ialkronlarg
e

gme
an

100

101

102

GCKCSS
 GFX1070 P40 KNL

BF

roa
d

dela
una

y
soc

ialkronlarg
e

gme
an

100

101

102

103

roa
d

dela
una

y
soc

ialkronlarg
e

gme
an

100

101

102

103

104

roa
d

dela
una

y
soc

ialkronlarg
e

gme
an

100

101

102

PRTC

roa
d

dela
una

y
soc

ialkronlarg
e

gme
an

100

101

102

roa
d

dela
una

y
soc

ialkronlarg
e

gme
an

100

101

102

no
rm

al
ize

d
TE

PS
 p

er
 w

at
t

Fig. 6. Performance per watt comparison between Xeon E5-4655v4, GeForce GTX1070, Tesla P40 and KNL (normalized to Xeon E5-4655v4).

averagely. In PR, graph traversals dominate on graphs with
large diameter and small average vertex degree, e.g., road and
delaunay, so KNL obtains better edge processing speed on
these graphs. For almost all combinations of graph benchmarks
and datesets, Xeon E5 achieves the worst performance, i.e.,
only 1%∼33.9% of CPU performance or 8%∼50% of KNL
performance. Only for TC, GPUs are slightly slower than
Xeon E5 on large graph datasets, due to large penalties of data
transfers on PCIe links between CPU and GPU memories.

B. Power and Performance Per Watt Comparison

The details of power characterization is shown in Figure 5,
where we list power consumptions of four types of hardware
and their 512GB DRAM main memories represented byX-
DRAM (X can be Xeon E5 {C}PU, {G}FX1070, {P}40 and
{K}NL.). The KNL power includes the power of MCDRAM,
while the GPU power contains the power of its GDDR5
memory. For GPUs, we used nvprof to profile the GPU power
and likwid-powermeter to measure the DRAM power in its
host machine.

For social graph datasets, all platforms are able to fully
occupy almost 100% hardware resources and approach their
TDP in a short time, because large traverse parallelism exists in
these datasets. Only CPU DRAM is heavily accessed during
BFs, while other platforms barely access their 512GB main
memories. This is because both GPUs has their own GPU
memories and KNL has a 16GB MCDRAM-based cache.
As a result, only CPU DRAM achieves> 60W average
power consumption. For road graph datasets, the largest power
spent by P40 (GFX1070) during searches is only around 48%
(46%) of its TDP, due to the lack of traverse parallelism
in these datasets. The average power consumption of two
GPUs when processing road datasets decreases by 16%∼24%
over that dissipated during traversing on social datasets.In
contrast, compared to social graphs, CPU and KNL slightly
decrease their average power consumption by only 6%∼9%,

and the power consumption of CPU DRAM decreases by
10% averagely when processing road graphs. Compared to
GPUs, CPU and KNL are insensitive to topologies of graph
datasets due to their limited number of cores. Therefore, they
have more consistent power results throughout various graph
inputs. For large graph datasets, GPUs barely approach their
TDPs due to frequent data transfers through PCIe links. CPU
and KNL also suffers from frequent page faults, and thus
their largest power values are only around 70%∼80% of their
TDPs. However, compared to other datasets, DRAMs in all
hardware platforms significantly boost the power consumption
by 39%∼62% when dealing with large graph inputs. SS
shares a similar power consumption trend with BF. The power
consumption of TC, KC, GC and PR with small datasets is
similar to BF with social datasets, since all hardware platforms
enjoy similarly large graph processing parallelism and small
datasets do not need to frequently visit DRAMs. But when
running TC, KC, GC and PR with large datasets, DRAMs
spend 4%∼11% more power than that when processing large
datasets in BF. This is because graph applications operating
on both structures of large graphs and a huge volume of vertex
properties send more intensive memory accesses to DRAMs
than traversal-based benchmarks.

The performance per watt comparison among all hardware
platforms is exhibited in Figure 6, where all results are
normalized to the performance per watt result of Xeon E5
CPU. Compared to CPU, P40 (GFX1070) achieves 2.5∼69×
(3∼37×) better performance per watt averagely. On average,
KNL obtains only 60%∼285% better performance per watt
over CPU. But for large graph datasets, compared to GPUs,
KNL improves the performance per watt by 74%∼186% when
running BF and PR, and has similar results on performance per
watt when running other benchmarks. Frequent data transfers
between GPU and CPU memories caused by the limited
capacity of GDDR5 memory waste a large amount of power
and slow down applications on GPUs when processing large

graphs. When running GC, TC and PR, although P40 is faster
than GFX1070, the power consumption of P40 is also larger.
Therefore, the performance per watt of P40 is not significantly
better than that of GFX1070 for these benchmarks.

C. Threading
1) Thread Scaling:We show the graph application per-

formance with varying OpenMP thread numbers on KNL in
Figure 7, where all performance results are normalized to the
performance achieved by 256 threads. 256 (4 threads× 64
cores) is the KNL logic core number. Due to the limited
figure space, we selected only the larger dataset in each graph
input category. With a small number of threads (< 32), there
are not enough working threads to do the task, and thus no
benchmark obtains its best performance. When having more
threads, the performance of almost all benchmarks improves
more or less. However, when the thread number goes beyond
256, the execution time significantly rises, since the thread
synchronization overhead dominates and degrades the perfor-
mance of most benchmarks. The best performance of each
benchmark is typically achieved by32 ∼ 512 threads.

SMT and oversubscription allow multiple independent
threads of execution on a core to better utilize hardware
resources on that core. To implement SMT, some hardware
sections of the core (but not the main execution pipeline) are
duplicated to store architectural states. When one thread is
stalled by long latency memory accesses, SMT stores its state
to backup hardware sections and switches the core to execute
another thread. SMT transforms one physical KNL core to
four logic cores, each of which supports one thread. Some
applications with certain datasets, e.g., TC with ego-Gplus
and SS with kron_g500-logn18, fulfill their best performance
by SMT (256 threads). In contrast, oversubscription requires
the assistance from software such as OS or OpenMP library
to switch threads, when the running thread is stalled. For
applications suffering from massive concurrent cache misses,
like SS with roadNet_TX and delaunay_n19, oversubscription
supports more simultaneous threads and outruns SMT. When
running these applications, compared to the penalty of long
latency memory accesses, the OS context switching overhead
is not significant.

2) The Optimal Thread Number:We define the optimal
thread number as the thread number achieving the best per-
formance for each benchmark. Figure 8 describes the optimal
thread number for all applications with all datasets. Thereis
no universal optimal thread number, e.g., the physical core
number or the logic core number, that can always have the best
performance for all applications with all datasets. Different
applications require distinctive optimal thread numbers for
their own best performance. Moreover, even for the same
application, the optimal thread numbers for various graph
datasets are different. If statically setting the thread number
to 256 for all application, Figure 7 shows KC with twitter7 is
decelerated by4.1×.

3) Thread Placement and Affinity:Because graphBIG de-
pends on the OpenMP library, we can configure the thread
placement and affinity byKMP_AFFINITY=X, granularity=Y.

Here, X indicates thread placement and has two options:
assigning threadn+1 to an available thread context as close as
possible to that of threadn (Compact) or distributing threads
as evenly as possible across the entire system (Scatter). And
Y denotes granularity and includes two choices: allowing all
threads bound to a physical core to float between different
thread contexts (Core) or causing each thread to be bound to a
single thread context (Thread). The performance comparison
between all configurations of thread placement and affinity
is shown in Figure 9, where each bar represents oneX-Y
combination and all bars are normalized to Compact-Core. We
see that Compact configurations with Core and Thread have
worse performance, since Scatter configurations better utilize
all physical cores and distribute memory requests evenly
among all memory controllers. In two Scatter configurations,
granularity Thread wins slightly better performance, because
it scatters consecutive threads sharing similar application be-
haviors to different physical cores. SMT works better when
threads with different program behaviors run on the same
physical core. When one thread is stalled by memory accesses,
the core is switched to other threads that unlikely confront
memory stalls in near future due to their distinctive behaviors.

D. MCDRAM

We configured MCDRAMs as a hardware-managed L3
cache for KNL as default. However, we can also disable
MCDRAMs to use only DDR4 DRAM as main memory.
The performance improvement of MCDRAM is exhibited
in Figure 10, where all results are normalized to the per-
formance of KNL with only DDR4 DRAM main mem-
ory. Compared to DDR4, MCDRAM can supply4× band-
width. The MCDRAM-based cache boosts the performance
of most benchmarks by its 16GB capacity and larger band-
width. Particularly, large graph datasets benefit more fromthe
MCDRAM-based cache, since they enlarge the working set
size for most applications. On the contrary, the access latency
of MCDRAM is longer than that of DDR4 DRAM [24].
Some benchmarks processing graphs with large diameter and
small average degree, e.g. BF with road datasets, are more
sensitive to the prolonged memory access latency and actually
decelerated by the MCDRAM-based cache, because they have
a limited number of concurrently pending memory accesses
and small memory footprints.

E. Vectorization

We compiled graph programs with icc -O3 with various vec-
torization choices: no vectorization,AVX2 and AVX512. The
performance of graph benchmarks with different vectorization
options is shown in Figure 11, where all results are normalized
to the no vectorization schemeNOVEC. AVX2 improves the
graph processing performance by 47%∼324% overNOVEC.
However, compared toAVX2, AVX512does not significantly
further boost the performance of graph applications. This is
because the implementation of System G does not explicitly
represent vertices or edges by floating point or integer arrays.
Instead, vertices and edges are encapsulated into lists or maps

32 64 128 256 512 102
4

0

1

2

32 64 128 256 512 102
4

0

1

2
32 64 128 256 512 102

4
0

1

2

32 64 128 256 512 102
4

0

1

2
32 64 128 256 512 102

4
0

1

2

32 64 128 256 512 102
4

0

1

2

no
rm

al
iz
ed

no
rm

al
iz
ed

 roadNet_TX ego-Gplus delaunay_n19 kron_g500-logn18 Twitter
pe

rfo
rm

an
ce

KC

TCGC

thread #thread #

SSpe
rfo

rm
an

ce

PR

thread #

BF

Fig. 7. The KNL performance with varying thread numbers (normalized to the performance achieved by 256 threads).

ro
ad

N
et

_C
A

ro
ad

N
et

_T
X

so
c-

Sl
as

hd
ot

08
11

eg
o-

G
pl

us
de

la
un

ay
_n

18
de

la
un

ay
_n

19
kr

on
_g

50
0-

lo
gn

17
kr

on
_g

50
0-

lo
gn

18
tw

itt
er

co
m

-fr
ie

nd
st

er

ro
ad

N
et

_C
A

ro
ad

N
et

_T
X

so
c-

Sl
as

hd
ot

08
11

eg
o-

G
pl

us
de

la
un

ay
_n

18
de

la
un

ay
_n

19
kr

on
_g

50
0-

lo
gn

17
kr

on
_g

50
0-

lo
gn

18
tw

itt
er

co
m

-fr
ie

nd
st

er

ro
ad

N
et

_C
A

ro
ad

N
et

_T
X

so
c-

Sl
as

hd
ot

08
11

eg
o-

G
pl

us
de

la
un

ay
_n

18
de

la
un

ay
_n

19
kr

on
_g

50
0-

lo
gn

17
kr

on
_g

50
0-

lo
gn

18
tw

itt
er

co
m

-fr
ie

nd
st

er

ro
ad

N
et

_C
A

ro
ad

N
et

_T
X

so
c-

Sl
as

hd
ot

08
11

eg
o-

G
pl

us
de

la
un

ay
_n

18
de

la
un

ay
_n

19
kr

on
_g

50
0-

lo
gn

17
kr

on
_g

50
0-

lo
gn

18
tw

itt
er

co
m

-fr
ie

nd
st

er

ro
ad

N
et

_C
A

ro
ad

N
et

_T
X

so
c-

Sl
as

hd
ot

08
11

eg
o-

G
pl

us
de

la
un

ay
_n

18
de

la
un

ay
_n

19
kr

on
_g

50
0-

lo
gn

17
kr

on
_g

50
0-

lo
gn

18
tw

itt
er

co
m

-fr
ie

nd
st

er

ro
ad

N
et

_C
A

ro
ad

N
et

_T
X

so
c-

Sl
as

hd
ot

08
11

eg
o-

G
pl

us
de

la
un

ay
_n

18
de

la
un

ay
_n

19
kr

on
_g

50
0-

lo
gn

17
kr

on
_g

50
0-

lo
gn

18
tw

itt
er

co
m

-fr
ie

nd
st

er
 8

16
32
64

128
256
512

1024

PR

TC

GC
KCBF

th
e

op
tim

al
 th

re
ad

 #

SS

Fig. 8. The optimal thread number for all benchmarks with all datasets

BF SS KC GC TC PR
1.0
1.2
1.4
1.6
1.8
2.0

no
rm

al
ize

d
pe

rf.

 Compact-Thread
 Scatter-Core
 Scatter-Thread

Fig. 9. Performance comparison between various configurations of thread
placement and affinity (normalized to Compact-Core).

BF-ro
ad

BF-so
cial BF-la

rge SS KC GC TC PR
0.8
1.0
1.2
1.4
1.6

no
rm

al
ize

d
pe

rf.

Fig. 10. Performance comparison between DDR4 and MCDRAM (normalized
to DDR4 DRAM main memory without MCDRAM).

in graph frameworks, and thus it is difficult to vectorize these
data structure on KNL. Moreover, most graph datasets we used
are sparse, so they can barely be improved by wideAVX512
SIMD instructions.

BF SS KC GC TC PR
1.0
1.5
2.0
2.5
4.0
4.5

no
rm

al
ize

d
pe

rf. AVX2
 AVX512

Fig. 11. Performance comparison between AVX2 and AVX512 (normalized
to no vectorization (NOVEC).

BF SS KC GC TC PR
0.5
0.6
0.7
0.8
0.9
1.0

no
rm

al
ize

d
pe

rf.

 All-to-All Hemisphere SNC2 SNC4

Fig. 12. Performance comparison between different cache clustering modes
(normalized toQuadrant).

F. Cache Clustering Mode

The performance comparison between various cache clus-
tering modes is shown in Figure 12, where all results are
normalized to Quadrant. As explained in Section II-D3, among
all hardware-managed modes includingAll-to-All, Hemisphere
andQuadrant, Quadrant achieves the best performance, since
it can keep both L2 accesses and memory accesses served
within the local quadrant on KNL. Two software-managed
modes (SNC-2andSNC-4) have even worse graph processing
performance, since benchmarks in graphBIG do not have
NUMA-awareness and have to pay huge penalty for frequent
communications between different NUMA regions. SNC-4
offers four NUMA regions, therefore, compared to SNC-2,
it degrades the graph application performance more by large
overhead inter-NUMA-region communications.

BF
SS
KC
GC
TC
PR

0 20 40 60 80 100
execution time breakdown (%)

 Front-End Bound Bad Speculation Retiring Back-End Bound

Fig. 13. KNL execution time breakdown (with twitter7).

BF SS KC GC TC PR
0.4

0.6

0.8

1.0
no

rm
al

ize
d

pe
rf.

 100K
 1M
 10M

(a) Vertex (normalized to 100K).

BF SS KC GC TC PR
0.9
111

1.2
1.4
1.6
1.8
222

no
rm

al
ize

d
pe

rf. 10
 20
 30

(b) Degree (normalized to 10).

BF SS KC GC TC PR
0.4
0.6
0.8
1.0
1.2
1.4

no
rm

al
ize

d
pe

rf. erdos-renyi
 real-world
 highly-skewed

(c) Skewness (normalized to Erdős-Rényi).
Fig. 14. The KNL performance with various R-MAT datasets.

G. Execution Time Breakdown

To understand bottlenecks of applications, we show KNL
execution time breakdown of all benchmarks with twitter7
graph input in Figure 13.Bad Speculationis the time stall due
to branch mis-prediction.Retiring denotes the time occupied
by the execution of useful instructions.Front-End Bound
indicates the time spent by fetching and decoding instructions,
while Back-End Boundmeans the waiting time due to a lack
of required resources for accepting more instructions in the
back-end of the pipeline, e.g., data cache misses and main
memory accesses. It is well known that graph applications are
extremely memory intensive and have irregular data accesses.
The breakdown of execution time on KNL also supports this
observation. For KC and GC,> 90% execution time is used
to wait for back-end stalls. Although in Figure 10, the 16GB
MCDRAM-based cache improves the performance of KC and
GC by > 10% on average, we anticipate a larger capacity
MCDRAM-based cache can further boost their performance,
especially when processing large graph datasets.

H. Dataset Sensitivity Analysis

We generated scale-free graphs (R-MAT [6]) with varying
numbers of vertices, average vertex degrees and vertex dis-
tributions by PaRMAT generator [14]. The dataset sensitivity
studies on KNL are shown in Figure 14. Among three R-
MAT parameters (a, b and c) [6], we always enforcedb = c

for symmetry. To produce different skewnesses, we set the
ratio (skewness) betweena and b to 1 (Erd̋os-Rényi model),
3 (real-world) and 8 (highly-skewed). In Figure 14(a), we
fixed the average vertex degree to 20 and theskewnessto 3.
With an increasing number of vertices, the performance of all
benchmarks degrades more or less, mainly because DTLB and
L2 miss rates are increased by larger graph sizes. We fixed the
vertex number to 1M and theskewnessto 3 in Figure 14(b). All
applications demonstrate better performance with enlarging
average vertex degree, since more edges per vertex lead to
increased L2 hit rate. Particularly, the performance of TC
and PR increases more obviously, since they operate on
neighbor sets in vertex properties and higher vertex degree
brings more accesses within vertices. In Figure 14(c), we set
the number of vertices and the average vertex degree to 1K
and 20 respectively. And we explored theskewnessamong
1, 3 and 8. For traversal-based applications, BF and SS, as
graph skewness increases and graph eccentricity decreases,
the application performance increases. Higher-skewed graphs
have smaller diameter resulting in faster traversals. On the
contrary, the other graph benchmarks suffer from severer load

imbalance and throughput degradation, when their datasetsare
more skewed.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a performance and power charac-
terization study to show the potential of KNL MIC processors
on parallel graph processing. We further study the impact
of KNL architectural innovations, such as many OoO cores,
VPUs, cache clustering modes and MCDRAM, on the perfor-
mance of multi-threaded graph applications. To fully utilize
KNLs, in future, we need to overcome challenges from both
hardware angle and software perspective.

First, from hardware angle, KNL supplies many architec-
tural features that can be configured by knobs. Different graph
applications may favor different configurations. For instance,
different graph benchmarks require distinctive numbers of
threads to achieve the best performance. Furthermore, some
applications benefit from high bandwidth MCDRAM, others
may be improved by low latency DDR4 DRAM. Therefore,
it is vital to have auto-tuning tools to search the optimal
configuration of these knobs to achieve the best performance
on KNLs. Previous works propose exhaustive iteration-based
optimizations [9], [16] and machine-learning-based tuning
techniques [11], [18], [33]. For KNLs, we believe that fu-
ture auto-tuning schemes have to consider not just the MIC
architecture, but the heterogeneous main memory system.

Second, from software perspective, though a state-of-the-art
multi-threaded graph framework fully optimized for traditional
multi-core CPUs can run on KNLs, we observe that hard-
ware resources such as VPUs are underutilized and advanced
software-managed architectural features, e.g., the SNC-4cache
clustering mode, may even hurt the performance of graph
applications. Previous efforts [7], [13] optimize graph data
structures and primitives to better utilizeAVX512instructions
and vectorize graph applications like breadth first search [13],
page rank [8] and graph coloring [10]. In future, instead of
optimizing a single benchmark, we need to create a fully vec-
torized graph framework offeringAVX512friendly primitives
to support a wide variety of graph applications on KNLs.
Moreover, we should incorporate a OS-based [21] or library-
based [20] NUMA-aware memory management technique into
future graph frameworks, so that the graph applications can
benefit from the lowest local memory access latency provided
by SNC-4 without incurring large communication overhead
between NUMA regions. The future graph frameworks on
KNLs also need to be rewritten with heterogeneous memory
supporting libraries such as MEMKIND to allocate latency

sensitive pages to DDR4 DRAMs and bandwidth sensitive
pages to MCDRAMs.

ACKNOWLEDGMENT

We gratefully acknowledge support from the Intel Parallel
Computing Center (IPCC) grant, NSF OCI-114932 and CIF-
DIBBS 143054. We appreciate the support from IU PHI,
FutureSystems team and ISE Modelling and Simulation Lab.

REFERENCES

[1] M. Ahmad, F. Hijaz, Q. Shi, and O. Khan, “Crono: A benchmark suite
for multithreaded graph algorithms executing on futuristic multicores,”
in IEEE International Symposium on Workload Characterization, 2015,
pp. 44–55.

[2] M. Ahmad and O. Khan, “Gpu concurrency choices in graph analytics,”
in IEEE International Symposium on Workload Characterization, 2016,
pp. 1–10.

[3] T. Barnes, B. Cook, J. Deslippe, D. Doerfler, B. Friesen, Y. He, T. Kurth,
T. Koskela, M. Lobet, T. Malas, L. Oliker, A. Ovsyannikov, A.Sarje,
J. L. Vay, H. Vincenti, S. Williams, P. Carrier, N. Wichmann, M.Wagner,
P. Kent, C. Kerr, and J. Dennis, “Evaluating and optimizing the nersc
workload on knights landing,” inInternational Workshop on Perfor-
mance Modeling, Benchmarking and Simulation of High Performance
Computer Systems, 2016, pp. 43–53.

[4] S. Beamer, K. Asanovic, and D. Patterson, “Locality exists in graph
processing: Workload characterization on an ivy bridge server,” in IEEE
International Symposium on Workload Characterization, 2015, pp. 56–
65.

[5] M. Burtscher, R. Nasre, and K. Pingali, “A quantitative study of irregular
programs on gpus,” inIEEE International Symposium on Workload
Characterization, 2012, pp. 141–151.

[6] D. Chakrabarti, Y. Zhan, and C. Faloutsos, “R-MAT: A recursive model
for graph mining,” inSIAM International Conference on Data Mining,
2004.

[7] L. Chen, X. Huo, B. Ren, S. Jain, and G. Agrawal, “Efficientand simpli-
fied parallel graph processing over cpu and mic,” inIEEE International
Parallel and Distributed Processing Symposium, 2015, pp. 819–828.

[8] L. Chen, P. Jiang, and G. Agrawal, “Exploiting recent simdarchitectural
advances for irregular applications,” inInternational Symposium on
Code Generation and Optimization, 2016, pp. 47–58.

[9] Y. Chen, S. Fang, Y. Huang, L. Eeckhout, G. Fursin, O. Temam,and
C. Wu, “Deconstructing iterative optimization,”ACM Transactions on
Architecture and Code Optimization, vol. 9, no. 3, pp. 21:1–21:30, Oct.
2012.

[10] M. Deveci, E. G. Boman, K. D. Devine, and S. Rajamanickam, “Par-
allel graph coloring for manycore architectures,” inIEEE International
Parallel and Distributed Processing Symposium, 2016, pp. 892–901.

[11] A. Ganapathi, K. Datta, A. Fox, and D. Patterson, “A casefor machine
learning to optimize multicore performance,” inUSENIX Conference on
Hot Topics in Parallelism, 2009, pp. 1–1.

[12] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Pow-
ergraph: Distributed graph-parallel computation on natural graphs,” in
USENIX Conference on Operating Systems Design and Implementation,
2012, pp. 17–30.

[13] P. Jiang, L. Chen, and G. Agrawal, “Reusing data reorganization
for efficient simd parallelization of adaptive irregular applications,” in
International Conference on Supercomputing, 2016, pp. 16:1–16:10.

[14] F. Khorasani, R. Gupta, and L. N. Bhuyan, “Scalable simd-efficient
graph processing on gpus,” inInternational Conference on Parallel
Architectures and Compilation Techniques, 2015, pp. 39–50.

[15] F. Khorasani, K. Vora, R. Gupta, and L. N. Bhuyan, “Cusha: Vertex-
centric graph processing on gpus,” inInternational Symposium on High-
performance Parallel and Distributed Computing, 2014, pp. 239–252.

[16] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. Davidson, “Prac-
tical exhaustive optimization phase order exploration and evaluation,”
ACM Transactions on Architecture and Code Optimization, vol. 6, no. 1,
pp. 1:1–1:36, Apr. 2009.

[17] A. Kyrola, G. Blelloch, and C. Guestrin, “Graphchi: Large-scale graph
computation on just a pc,” inUSENIX Conference on Operating Systems
Design and Implementation, 2012, pp. 31–46.

[18] H. Leather, E. Bonilla, and M. O’Boyle, “Automatic feature generation
for machine learning based optimizing compilation,” inIEEE/ACM
International Symposium on Code Generation and Optimization, 2009,
pp. 81–91.

[19] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford large network
dataset collection,” http://snap.stanford.edu/data, Jun. 2014.

[20] S. Li, T. Hoefler, and M. Snir, “Numa-aware shared-memory collec-
tive communication for mpi,” inInternational Symposium on High-
performance Parallel and Distributed Computing, 2013, pp. 85–96.

[21] T. Li, D. Baumberger, D. A. Koufaty, and S. Hahn, “Efficient operat-
ing system scheduling for performance-asymmetric multi-core architec-
tures,” in ACM/IEEE Conference on Supercomputing, 2007, pp. 53:1–
53:11.

[22] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,and J. M.
Hellerstein, “Distributed graphlab: A framework for machinelearning
and data mining in the cloud,”Proceedings of the VLDB Endowment,
vol. 5, no. 8, pp. 716–727, APR 2012.

[23] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in ACM SIGMOD International Conference on Management of Data,
2010, pp. 135–146.

[24] J. D. McCalpin, “Memory latency on the intel xeon phi x200knl proces-
sor,” http://sites.utexas.edu/jdm4372/tag/memory-latency/, Dec. 2016.

[25] R. C. Murphy, K. B. Wheeler, B. W. Barrett, and J. A. Ang, “Introducing
the graph 500,” inCray User’s Group (CUG), 2010.

[26] L. Nai, Y. Xia, I. G. Tanase, H. Kim, and C.-Y. Lin, “Graphbig:
Understanding graph computing in the context of industrial solutions,” in
International Conference for High Performance Computing,Networking,
Storage and Analysis, 2015, pp. 69:1–69:12.

[27] D. Nguyen, A. Lenharth, and K. Pingali, “A lightweight infrastructure
for graph analytics,” inACM Symposium on Operating Systems Princi-
ples, 2013, pp. 456–471.

[28] M. A. O’Neil and M. Burtscher, “Microarchitectural performance char-
acterization of irregular gpu kernels,” inIEEE International Symposium
on Workload Characterization, 2014, pp. 130–139.

[29] A. Sodani, “Knights landing (knl): 2nd generation intel R© xeon phi
processor,” inIEEE Hot Chips Symposium, 2015, pp. 1–24.

[30] T. Suzumura, K. Ueno, H. Sato, K. Fujisawa, and S. Matsuoka, “Per-
formance characteristics of graph500 on large-scale distributed environ-
ment,” in IEEE International Symposium on Workload Characterization,
2011, pp. 149–158.

[31] I. Tanase, Y. Xia, L. Nai, Y. Liu, W. Tan, J. Crawford, andC.-Y. Lin, “A
highly efficient runtime and graph library for large scale graph analytics,”
in Workshop on GRAph Data Management Experiences and Systems,
2014.

[32] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson,
“From "think like a vertex" to "think like a graph",”Proceedings of the
VLDB Endowment, vol. 7, no. 3, pp. 193–204, Nov. 2013.

[33] A. Tiwari, C. Chen, J. Chame, M. Hall, and J. K. Hollingsworth, “A
scalable auto-tuning framework for compiler optimization,” in IEEE
International Symposium on Parallel&Distributed Processing, 2009, pp.
1–12.

[34] J. Treibig, G. Hager, and G. Wellein, “Likwid: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
International Workshop on Parallel Software Tools and ToolInfrastruc-
tures, 2010.

[35] Y. Wang, A. Davidson, Y. Pan, Y. Wu, A. Riffel, and J. D. Owens,
“Gunrock: A high-performance graph processing library on the gpu,”
in ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, 2015, pp. 265–266.

[36] Q. Xu, H. Jeon, and M. Annavaram, “Graph processing on gpus: Where
are the bottlenecks?” inIEEE International Symposium on Workload
Characterization, 2014, pp. 140–149.

[37] J. Zhong and B. He, “Medusa: A parallel graph processingsystem on
graphics processors,”ACM SIGMOD Record, vol. 43, no. 2, pp. 35–40,
Dec. 2014.

